
CMSC 451:Spring 2025 Dave Mount

Solutions to Homework 5: NP-Completeness and Approximations

Solution 1: We need to prove that (i) SIS ∈ NP and (ii) SIS is NP-hard. For the latter, we will
show that IS ≤P SIS.

� SIS ∈ NP: Given an instance (G, k) for SIS, where G = (V,E), the certificate consists of a
subset V ′ ⊆ V of size k. In polynomial time we can compute the distances between all pairs
of vertices (e.g., using the Floyd-Warshall algorithm) and then check for each pair u, v ∈ V ′

that the distance between them is 3 or greater. If so, the verification accepts and otherwise
it rejects.

� IS ≤P SIS: Consider any instance (G, k) for IS. Our objective is to compute an instance
(G′, k′) for SIS such that G has an independent set of size k if and only if G′ has a strong
independent set of size k′. Intuitively, we need to translate the notion of two vertices being
nonadjacent to the notion that two vertices are at distance three or higher. This suggests the
idea of inserting a vertex into the middle of each edge, called a mid-edge vertex, thus doubling
distances in the graph. Unfortunately, this does not work, since there is nothing forbidding
us from placing these mid-edge vertices into the independent set.

To deal with this issue, we will render it useless to include these vertices by connecting them
all to each other. At first, this might seem like a bad thing to do, since vertices that were
far apart in distance are suddenly much closer. This essentially causes every vertex in the
original graph to be at distance at most two from every other original vertex. As we shall
see, this is not a problem. The reduction is illustrated in Fig. 1.

SISIS

G: G′:

f

k = 4 k′ = 4

Figure 1: Reduction from IS to SIS.

More formally, given a graph G = (V,E) and integer k for IS, we produce a new graph
G′ = (V ′, E′) and integer k′ as follows. First set k′ ← k. Next, for each edge (u, v) ∈ E,
we create a new mid-edge vertex wuv, and we connect all these mid-edge vertices together
in a completely connected subgraph. Next, we replace each edge (u, v) ∈ E, the two edges
(u,wuv) and (v, wuv). Let G

′ denote the resulting graph (see Fig. 1). We output (G′, k′).

Letting n = |V | and m = |E|, G′ has n +m vertices and O(2m +m2) = O(m2) edges. The
construction can be performed in time proportional to the size of G′, which is O(n + m2),
which is polynomial in the input size. Correctness is established in the following claim.

1

Claim: G has an independent set of size k if and only if G′ has an strong independent set of
size k′ = k.

Proof: It will simplify the proof to assume that k ≥ 2, and that G has no isolated vertices.
(If k = 1, then the answer to both problems is trivially “yes” for any graph. Isolated
vertices can always be added to any independent set or strong independent set. So, we
can remove them and adjust the value of k accordingly.)

(⇒) If G has an independent set V ′ of size k, we assert that the same vertices form a
strong independent set in G′. If u, v ∈ V ′, then they are not adjacent in G, meaning
that we need at least two edges to get from u to v in G. In G′, the shortest distance
between them is at least three (from u to a mid-edge vertex for an edge incident to u,
then to another mid-edge vertex for an edge incident to v, then to v itself). Therefore
G′ has a strong independent set of size k′ = k.

(⇐) Conversely, suppose that G′ has an strong independent V ′ set of size k′, where
k′ ≥ 2. We first assert that we can assume that all the vertices of V ′ are taken from
the original set V , and do not include any mid-edge vertices. Observe that, because
we assume there are no isolated vertices, every mid-edge vertex is within distance two
of every vertex in G′ (from the mid-edge vertex to any other mid-edge vertex, then to
an original vertex incident to the associated edge). Thus, any strong independent set
containing a single mid-edge vertex has size at most one, and by hypothesis k′ ≥ 2. If
two of the original vertices are in V ′, then they must be separated by a distance of at
least three. This implies that they could not have been adjacent in the original graph G
(for otherwise, they would be distance two, going through the mid-edge vertex of their
shared edge). Therefore, V ′ is an independent set in G of size k = k′.

Solution 2:

(a) Given a directed graph G = (V,E), the reduction takes any vertex u and replaces it with two
new vertices, u′ and u′′. All the edges outgoing from the original u now are outgoing from u′

(by replacing each edge (u, v) with (u′, v)), and all the edges incoming to the original u now
are incoming to u′′ (by replacing each edge (v, u) with (v, u′′)). Let G′ be the resulting graph
(see Fig. 2(a)). Correctness is established by the following claim.

uG: G′:
f

(a) (b)

u′′ u′

Figure 2: DHC to DHP reduction.

2

Claim: G has a Hamiltonian cycle if and only if G′ has a Hamiltonian path.

Proof: (⇒) Suppose that G has a Hamiltonian Cycle ⟨u0, u1, . . . , un−1⟩. Since we can start
the cycle wherever we like, we may assume that u0 = u in our construction. It follows
that G′ has the path ⟨u′, u1, . . . , un−1, u

′′⟩. Clearly, this is a Hamiltonian path in G′ (see
Fig. 2(b)).

(⇐) Suppose that G′ has a Hamiltonian Path. The path must start at u′ and end at u′′,
because these vertices have only outgoing and incoming edges, respectively. Therefore,
the path must have the form ⟨u′, u1, . . . , un−1, u

′′⟩, for some sequence u1, . . . , un−1 that
forms a simple path in G′. We can convert this into a cycle in G by replacing u′ and u′′

with the single node u. Therefore, G has a Hamiltonian Cycle.

(b) Given a directed graph G = (V,E), the reduction replaces each vertex u ∈ V with three
vertices u, u′, and u′′. Think of u as the entry vertex and u′′ as the exit vertex. We create
undirected edges (u, u′) and (u′, u′′). Also, for each directed edge (u, v) ∈ E, we create the
undirected edge (v′′, u), from v’s exit vertex to u’s entry vertex.. Let G′ be the resulting
graph (see Fig. 3(b)).

G: f

(a) (b)

G′:

u′′
u′

v

u u u′′u′

u′′
u′

v

(c)

u u

(d)

improper path corrected

Figure 3: DHP to HP reduction.

It is not hard to see that if G has a Hamiltonian path, then G′ will have one as well, by tracing
each triple in the proper order (u, u′, u′′). However, the converse is not at all obvious. Could
the path in G′ could start at a middle vertex u′, for example, which does not correspond to
a path in G. We’ll show that if this happens, we can reorient the path so it will start at an
entry vertex and end at an exit vertex and visit all vertices along the way.

Claim: The digraph G has a Hamiltonian path if and only if the undirected graph G′ has a
Hamiltonian path.

Proof: (⇒) If G has a directed Hamiltonian path ⟨u1, . . . , un⟩, we assert that G′ has the
Hamiltonian path by replacing each vertex ui with the triple ui, u

′
i, u

′′
i (see Fig. 3(b)).

Since this is Hamiltonian path in G, the edge (ui−1, ui) is in G, which implies that
the edge (u′′i−1, ui) is in G′. By construction the edges (ui, u

′
i) and (u′i, u

′′
i) are in G′.

Therefore, this a Hamiltonian path in G′.

(⇐) Suppose that G′ has a Hamiltonian path. We first claim that we may assume that
such a path starts at some vertex u and ends at some vertex v′′. If not, we say that the
path is improper. One way that a path may be improper is that it starts at a middle

3

vertex u′. We will assume that the next vertex on the path is the entry vertex u (see
Fig. 3(c)), since a symmetrical argument applies if the path goes next to u′′. Since it is
Hamiltonian, the path must eventually return to the exit vertex u′′. By the nature of G′,
the vertex v preceding u′′ must be an entry vertex. We reverse the path so it starts at v,
then goes to u then to u′ and u′′. After that it follows the original path (see Fig. 3(d)).
If the path ends at a middle vertex, a similar correction can be performed.

After this correction, the path starts either at an entry or exit vertex. If it starts at
an exit vertex, reverse the entire path, so it starts at an entry vertex. Henceforth, the
path must follow the proper structure, entering each vertex triple at the entry vertex
and leaving at an exit vertex.

Now that the path is proper, it is easy to see that it corresponds to a valid Hamiltonian
path in G, since each edge between two vertices leaves on an exit vertex u′′ and enters
on an entry vertex v, but this implies that the directed edge (u, v) is part of the original
graph.

By the way, you could make the correctness proof simpler by modifying the transformation.
We can add a source vertex s to G, which is joined by directed edges from s into to all the
vertices of G and a sink vertex t, which is joined by directed edges from all the vertices of G
into t. This does not change whether G has a Hamiltonian path, but it simplifies the proof
because it is easy to see that any Hamiltonian path in G′ must have one endpoint at the entry
vertex s and the other at the exit vertex t′′, since these vertices have degree 1. The only way
the path could be improper is if it starts at t′′ and ends at s, in which case we simply reverse
it.

(b) Given an undirected graph G = (V,E), for each vertex u ∈ V , the algorithm creates a new
vertex u′ and adds the undirected edge (u, u′) (see Fig. 4(a)). Let G′ denote the resulting
graph. The following lemma shows that this is correct.

G: f

(a) (b)

G′:

Figure 4: HP to D3ST reduction.

Claim: G has a Hamiltonian path if and only if G′ has a degree-3 spanning tree.

Proof: (⇒) The Hamiltonian path forms a spanning tree of degree at most two in G. Adding
the additional edge (u, u′) to each vertex creates a spanning tree of degree at most three.

(⇐) Observe that each of the newly added edges (u, u′) must be in any spanning tree,
because this is the only edge incident to u′. Removing these edges decreases the degree

4

of all the remaining vertices by one. These vertices are all from the original graph.
Thus, we are left with a spanning tree of degree at most two. Such a spanning tree is a
Hamiltonian path.

Solution 3:

(a) We claim that the optimum tour just walks around the bounding rectangle for the points. To
see that this is optimal, observe that there are 2n points and hence 2n edges, and each pair
of points is separated by unit distance, so any TSP tour has total length at least 2n. This is
exactly the same as the perimiter of the bounding rectangle, so this is optimal.

(b) Let’s start with a1 and travel in clockwise order around the MST. Before short-cutting, the
twice-around tour has ⟨a1, b1, a1, a2, b2, a2, b3, . . . , an, bn, an, a1⟩ (see Fig. 5(a)). After short-
cutting, we have ⟨a1, b1, a2, b2, b3, . . . , an, bn, a1⟩. There are n− 1 segments, each of the form
⟨ai, bi, ai+1⟩, which has an L1 length of 1+2 = 3. At the end of the tour, we have the sequence
⟨an, bn, a1⟩, which has an L1 length of 1+2+(n−1). Thus, the overall L1 length of this tour
is TA(P (n)) = 3(n− 1) + (1 + 2 + (n− 1)) = 4n− 1. Therefore, the performance ratio is

lim
n→∞

TA(P (n))

TSP(P (n))
= lim

n→∞

4n− 1

2n
= 2.

(a) (b)

a1

b1

a2

b2

an

bn b1 b2

an

bn

a2 a3
a1

Figure 5: Approximation ratios for the metric TSP problem.

(c) The odd-degree vertices consist of the teeth of the comb (all of degree 1) and the vertices
a2, . . . , an−1 (all of degree 3). Assuming that n is even, the minimum-weight perfect matching
among these points connects (b2k−1, b2k) for 1 ≤ k ≤ n/2 and (a2k, a2k+1), for 1 ≤ k ≤ n/2−1.
In total, there are n− 1 edges of length 1, for a total weight of n− 1.

The Eulerian circuit has total weight equal to the weight of the MST, which is 2n − 1 plus
the n− 1 from the matching, which is 3n− 2. The resulting Eulerian circuit consists of two
pieces. First, a path that zig-zags from left to right: ⟨a1, b1, b2, a2, a3, b3, b4, a4, . . . , bn, an⟩.
The second is a straight-line path from an back to a1, going through all the a-points. Short-
cutting does not affect the length of either of these paths, so the L1 length of the Eulerian
circuit after short-cutting is still 3n− 2. Therefore, the performance ratio is

lim
n→∞

TA(P (n))

TSP(P (n))
= lim

n→∞

3n− 2

2n
=

3

2
.

Solution 4: This problem is known as the recitilinear minimum Steiner tree problem (RMST).

5

(a) Consider the following point set P = {(0, 1), (1, 0), (1, 2)} (see Fig. 6(a)). MST(P) consists of
two edges, each of length 2, for a total weight of 4 (see Fig. 6(b)). In contrast, the minimum
connector places a vertex at (1, 1), and has three line segments going to each of the three
points, for a total weight of 3 (see Fig. 6(c)).

(a) (b) (c)

MST(P) = 41

1
1

1
MC(P) = 3

P

(d)

Figure 6: Minimum connector.

(b) In class, we showed that in any metric space MST(P) ≤ TSP(P) (since the TSP minus one
edge is a spanning tree). We will use a similar argument to show that TSP(P) ≤ 2 ·MC(P).
First, observe that the minimum-connector must be a tree, since we could eliminate any cycle
while maintaining connectivity and decreasing the total weight. Since it is connected, we can
apply the twice-around tour and then apply short-cutting to obtain a TSP tour whose cost
is at most twice that of MC(P). Therefore, we have

MST(P) ≤ TSP(P) ≤ 2 ·MC(P),

implying that
MST(P)

MC(P)
≤ 2.

Solution 5: Let’s first derive an exact algorithm. Recall that in the exact algorithm presented in
class, after phase i, for 0 ≤ i ≤ n, the list L contains all the possible sums that can be made from
the elements {x1, . . . , xi}. Rather than maintain a single list L, we will maintain m + 1 lists Lj ,
for 0 ≤ j ≤ m. After the ith phase of the algorithm Lj stores all the possible sums of the elements
{x1, . . . , xi}, but with the additional condition that there are exactly j hazardous elements in the
sum. We modify the algorithm as follows.

� If xi is non-hazardous, then we update each list Lj following the standard process. That is,
Lj ← Lj ∪ (Lj + xi), for 0 ≤ j ≤ m.

� If it is hazardous, then when adding xi, we need to promote from Lj−1 to Lj . That is,
Lj ← Lj ∪ (Lj−1 + xi), for 1 ≤ j ≤ m.

The final result is the max among all the lists. The correctness follows as with the standard
algorithm. We can convert this into an approximation algorithm by applying the compression
process. The running time is larger by a factor of m which is at most n. Since the original
algorithm ran in O((n2 log t)/ε)), this runs in time O((n3 log t)/ε)). The algorithm is presented in
the following code block.

Solution to the Challenge Problem:

6

Approximate Subset Sum with Hazards
approx-hss(x[1..n], t, eps) { // approx subset sum with hazards

delta = eps/n // approx factor per stage

for (j = 0 to m) L[j] = <0> // basis case - no elements in sum

for (i = 1 to n) { // consider item x[i]

if (x[i] is not hazardous) {

for (j = 0 to m)

L[j] = merge(L[j], L[j] + x[i]) // standard update rule

} else { // x[i] is hazardous

for (j = 1 to m)

L[j] = merge(L[j], L[j-1] + x[i]) // promote when adding x[i]

}

L = compress(L, delta, t) // ...compress similar values and items > t

}

return the largest element in L[0], ..., L[m]

}

(a) We will show that the triangle inequality holds. The other two are trivial. Let p = (x, y)
and p = (x′, y′), since ∥p′ − p∥1 is the some of the L1 distances of the x- and y-components,
it suffices to prove the triangle inequality for each component individually. Given three real
numbers a, b, c, we want to show that

|c− a| ≤ |c− b|+ |b− a|.

We may assume without loss of generality that a ≤ c. There are two cases, depending on
whether b lies within the interval [a, c] or outside. If it within the interval, then |c− a| = |c−
b|+|b−a|, and we are done. If not, let’s assume that b < a. Then |c−a| ≤ |c−b| ≤ |c−b|+|b−a,
as desired. The case where b > c is similar.

(b) We assert that we never need to use any edges other than edges of length 1. The reason is
that the weight of the minimum spanning tree is at most 2n− 1 (as witnessed by the comb)
and every pair of points is at least 1 unit apart, meaning we need at least this much weight
in any spanning tree. Since there are 2n− 1 edges in the tree, all the edges are of weight 1.

We will maintain two quantities. (We’ll see later why this is needed.) First, let T (n) denote
the number of distinct minimum spanning trees on P (n), and second, let S(n) denote the
number of spanning forests on P (n) that consists of two connected components, where an
and bn are in different connected components. Let’s just call this a 2SF for short.

To derive T (n), observe that there is a unique basis case when n = 1 (the single edge (a1, b1)).
Otherwise, if n ≥ 2, we can create MST(n) in two different ways. First, we can take any
minimum spanning tree MST(n− 1) and add one of the three two-edge structures shown in
Fig. 7(a), (b), and (c). But this is not the only way to build a spanning tree. We can also
take any 2SF(n− 1) structure, and add the three-edge structure shown in Fig. 7(d). (This is
why we need S(n).)

Thus, we have the following recursion:

T (n) =

{
1 if n = 1
3T (n− 1) + S(n− 1) otherwise.

7

(a) (b)

MST
an

bn

an

bn

an

bn

an

bn

(c) (d)

MST MST 2SF

an

bn

(e)

2SF

MST(n)

2SF(n)

(g)(f)

MST
an

bn

an

bn

MST

Figure 7: Minimum spanning trees.

Next, to derive S(n), observe that we also have a unique basis case (two isolated vertices).
Otherwise, we can create 2SF(n) in two different ways. We can either add a single horizontal
edge from MST(n − 1) to either an or bn (see Fig. 7(e), (f)), or we can add two horizontal
edges to 2SF(n− 1) (see Fig. 7(g)). Thus, we have

S(n) =

{
1 if n = 1
2T (n− 1) + S(n− 1) otherwise.

To get some more insight, I worked out the first few terms T (n) = ⟨1, 4, 15, 56, 209, 780, 2911⟩,
and looked it up on the Online Encyclopedia of Integer Sequences, it revealed that both
recurrences satisfy the same rule, T (n) = 4T (n−1)−T (n−2) and S(n) = 4S(n−1)−S(n−2),
albeit with two different basis cases for n = 0, namely, T (0) = 1 and S(0) = 1. This can be
solved in closed form through the use of generating functions. (Which is beyond the scope of
this class.) The function grows roughly as T (n) = (2 +

√
3)n ≈ 3.73n.

Following these formulas, we have T (1) = S(1) = 1. T (2) = 3 + 1 = 4, S(2) = 2 + 1 = 3, and
T (3) = 12 + 3 = 15. These 15 trees on P (3) are shown in Fig. 8.

Figure 8: Minimum spanning trees.

8

https://oeis.org/A001353

