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CMSC 451: Lecture 12
Network Flows: Basic Concepts

Network Flow: The term “network flow” refers to a variety of related graph optimization prob-
lems, which are of fundamental value. In general, we are given a flow network, which is
essentially a directed graph with nonnegative edge weights. We can think of the edges as
“pipes” that are capable of carrying some sort of “stuff.” In applications, this stuff can be
any measurable quantity, such as fluid, megabytes of network traffic, commodities, currency,
and so on. Each edge of the network has a given capacity, that limits the amount of stuff it
is able to carry. The idea is to find out how much flow we can push from a designated source
node to a designated sink node.

Although the network flow problem is defined in terms of the metaphor of pushing fluids, this
problem and its many variations find remarkably diverse applications. These are often studied
in the area of operations research. The network flow problem is also of interest because it
is a restricted version of a more general optimization problem, called linear programming. A
good understanding of network flows is helpful in obtaining a deeper understanding of linear
programming.

Flow Networks: A flow network is a directed graph G = (V,E) in which each edge (u, v) ∈ E
has a nonegative capacity c(u, v) ≥ 0. (In our book, the capacity of edge e is denoted by ce.)
If (u, v) ̸∈ E we model this by setting c(u, v) = 0. There are two special vertices: a source s,
and a sink t (see Fig. 1).
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Fig. 1: A flow network.

We assume that there is no edge entering s and no edge leaving t. Such a network is sometimes
called an s-t network. We also assume that every vertex lies on some path from the source to
the sink.1 This implies that m ≥ n−1, where n = |V | and m = |E|. It will also be convenient
to assume that all capacities are integers. (We can assume more generally that the capacities
are rational numbers, since we can convert them to integers by multiplying them by the least
common multiple of the denominators.)

Flows, Capacities, and Conservation: Given an s-t network, a flow (also called an s-t flow)
is a function f that maps each edge to a nonnegative real number and satisfies the following
properties:

1Neither of these is an essential requirement. Given a network that fails to satisfy these assumptions, we can easily
generate an equivalent one that satisfies both.
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Capacity Constraint: For all (u, v) ∈ E, f(u, v) ≤ c(u, v).

Flow conservation (or flow balance): For all v ∈ V \ {s, t}, the sum of flow along edges
into v equals the sum of flows along edges out of v.

We can state flow conservation more formally as follows. First off, let us make the assumption
that if (u, v) is not an edge of E, then f(u, v) = 0. We then define the total flow into v and
total flow out of v as:

f in(v) =
∑

(u,v)∈E

f(u, v) and fout(v) =
∑

(v,w)∈V

f(v, w).

Then flow conservation states that f in(v) = fout(v), for all v ∈ V \ {s, t}. Note that flow
conservation does not apply to the source and sink, since we think of ourselves as pumping
flow from s to t.

Two examples are shown in Fig. 2, where we use the notation f/c on each edge to denote the
flow f and capacity c for this edge.
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Fig. 2: A valid flow and a maximum flow.

The quantity f(u, v) is called the flow along edge (u, v). We are interested in defining the
total flow, that is, the total amount of fluid flowing from s to t. The value of a flow f , denoted
|f |, is defined as the sum of flows out of s, that is,

|f | = fout(s) =
∑
w∈V

f(s, w),

(For example, the value of the flow shown in Fig. 2(a) is 5+8+5 = 18.) From flow conservation,
it follows easily that this is also equal to the flow into t, that is, f in(t). We will prove this
later.

Maximum Flow: Given an s-t network, an obvious optimization problem is to determine a flow
of maximum value. More formally, the maximum-flow problem is, given a flow network
G = (V,E), and source and sink vertices s and t, find the flow of maximum value from s to
t. (For example, in Fig. 2(b) we show flow of value 8+ 8+ 5 = 21, which can be shown to be
the maximum flow for this network.) Note that, although the value of the maximum flow is
unique, there may generally be many different flow functions that achieve this value.
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This problem has been the subject of a great deal of study. Here is a history of some of some
of the highlight results. Recall that n = |V | and m = |E|, and let C denote the sum of the
edge capacities (assumed to be integers).

• Ford-Fulkerson (1956) - Did not analyze the running time, but roughly O((n + m)C).
The same Ford of DP fame and the Bellman-Ford algorithm.

• Dinitz (1970) - O(n2m). This is often called “Dinic’s algorithm”, due to a misspelling
of the name.

• Edmonds-Karp (1972) - O(nm2). This incremental algorithm can also be used to com-
pute optimal weighted matchings of all sizes in bipartite graphs. Richard Karp is famous
for being one of the founders of NP-completeness (with Stephen Cook).

• Gabow (1985) - O(nm logC). This paper introduced an interesting optimization tech-
nique called scaling, where problems are solved at increasingly higher levels of accuracy.

• Goldberg-Tarjan (1986) - O(nm log(n2/m)) time. This is considered the asymptotically
fastest algorithm for Network Flows. This is the same Tarjan known for DFS, Union-
Find, and the most efficient version of Dijkstra’s algorithm.

Path-Based Flows: The definition of flow we gave above is sometimes call the edge-based defini-
tion of flows. An alternative, but mathematically equivalent, definition is called the path-based
definition of flows. Define an s-t path to be any simple path from s to t. For example, in
Fig. 1, ⟨s, a, t⟩, ⟨s, b, a, c, t⟩ and ⟨s, d, c, t⟩ are all examples of s-t paths. There may generally
be an exponential number of such paths (but that is alright, since this just a mathematical
definition).

A path-based flow is a function that assigns each s-t path a nonnegative real number such
that, for every edge (u, v) ∈ E, the sum of the flows on all the paths containing this edge is
at most c(u, v). Note that there is no need to provide a flow conservation constraint, because
each path that carries a flow into a vertex (excluding s and t), carries an equivalent amount of
flow out of that vertex. For example, in Fig. 3(b) we show a path-based flow that is equivalent
to the edge-based flow of Fig. 3(a). The paths carrying zero flow are not shown.
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Fig. 3: (a) An edge-based flow and (b) its path-based equivalent.

The value of a path-based flow is defined to be the total sum of all the flows on all the s-t paths
of the network. Although we will not prove it, the following claim is an easy consequence of
the above definitions.
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Claim: Given an s-t network G, under the assumption that there are no edges entering s or
leaving t, G has an edge-based flow of value x if and only if G has a path-based flow of
value x.

Multi-source, multi-sink networks: It may seem overly restrictive to require that there is only
a single source and a single sink vertex. Many flow problems have situations in which many
source vertices s1, . . . , sk and many sink vertices t1, . . . , tl. This can easily be modeled by just
adding a special super-source s′ and a super-sink t′, and attaching s′ to all the si and attach
all the tj to t′. We let these edges have infinite capacity (see Fig. 4). Now by pushing the
maximum flow from s′ to t′ we are effectively producing the maximum flow from all the si’s
to all the tj ’s.
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Fig. 4: Reduction from (a) multi-source/multi-sink to (b) single-source/single-sink.

Note that we don’t assume any correspondence between flows leaving source si and entering
tj . Flows from one source may flow into any sink vertex. In some cases, you would like to
specify the flow from a certain source must arrive at a designated sink vertex. For example,
imagine that the sources are manufacturing production centers and sinks are retail outlets,
and you are told the amount of commodity from si to arrive at tj . This variant of the flow
problem, called the multi-commodity flow problem, is a much harder problem to solve (in fact,
some formulations are NP-hard).

Why Greedy Fails: Before considering algorithms for solving network flows, let’s first consider
why a simple greedy scheme for computing the maximum flow fails. The idea behind the
greedy algorithm is motivated by the path-based notion of flow. (Recall this from the previous
lecture.) Initially the flow on each edge is set to zero. Next, find any path P from s to t,
such that the edge capacities on this path are all strictly positive. Let cmin be the minimum
capacity of any edge on this path. This quantity is called the bottleneck capacity of the path.
Push cmin units through this path. For each edge (u, v) ∈ P , set f(u, v) ← cmin + f(u, v),
and decrease the capacity of (u, v) by cmin. Repeat this until no s-t path (of positive capacity
edges) remains in the network.

While this may seem to be a very reasonable algorithm, and will generally produce a valid
flow, it may fail to compute the maximum flow. To see why, consider the network shown in
Fig. 5(a). Suppose we push 5 units along the topmost path, 8 units along the middle path,
and 5 units along the bottommost path. We have a flow of value 18. After adjusting the
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capacities (see Fig. 5(b)) we see that there is no path of positive capacity from s to t. Thus,
greedy gets stuck.
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Fig. 5: The greedy flow algorithm can get stuck before finding the maximum flow.

Residual Network: The key insight to overcoming the problem with the greedy algorithm is
to observe that, in addition to increasing flows on edges, it is possible to decrease flows on
edges that already carry flow (as long as the flow never becomes negative). It may seem
counterintuitive that this would help, but we shall see that it is exactly what is needed to
obtain an optimal solution.

To make this idea clearer, we first need to define the notion of the residual network and
augmenting paths. Given a flow network G and a flow f , define the residual network, denoted
Gf , to be a network having the same vertex set and same source and sink, and whose edges
are defined as follows:

Forward edges: For each edge (u, v) for which f(u, v) < c(u, v), create an edge (u, v) in Gf

and assign it the capacity cf (u, v) = c(u, v)− f(u, v). Intuitively, this edge signifies that
we can increase the flow along this edge by up to cf (u, v) units without violating the
original capacity constraint.

Backward edges: For each edge (u, v) for which f(u, v) > 0, create an edge (v, u) in Gf

and assign it a capacity of cf (v, u) = f(u, v). Intuitively, this edge signifies that we
can decrease the existing flow by as much as cf (u, v) units. Conceptually, by pushing
positive flow along the reverse edge (v, u) we are decreasing the flow along the original
edge (u, v).

Observe that every edge of the residual network has strictly positive capacity. (This will be
important later on.) Note that each edge in the original network may result in the generation
of up to two new edges in the residual network. Thus, the residual network is of the same
asymptotic size as the original network.

An example of a flow and the associated residual network are shown in Fig. 6(a) and (b),
respectively. For example, the edge (b, c) of capacity 2 signifies that we can add up to 2 more
units of flow to edge (b, c) and the edge (c, b) of capacity 8 signifies that we can cancel up to
8 units of flow from the edge (b, c).

The capacity of each edge in the residual network is called its residual capacity. The key
observation about the residual network is that if we can push flow through the residual
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Fig. 6: A flow f and the residual network Gf .

network then we can push this additional amount of flow through the original network. This
is formalized in the following lemma. Given two flows f and f ′, we define their sum, f + f ′,
in the natural way, by summing the flows along each edge. If f ′′ = f + f ′, then f ′′(u, v) =
f(u, v) + f ′(u, v). Clearly, the value of f + f ′ is equal to |f |+ |f ′|.

Lemma: Let f be a flow in G and let f ′ be a flow in Gf . Then (f + f ′) is a flow in G.

Proof: (Sketch) To show that the resulting flow is valid, we need to show that it satisfies
both the capacity constraints and flow conservation. It is easy to see that the capacities
of Gf were exactly designed so that any flow along an edge of Gf when added to the
flow f of G will satisfy G’s capacity constraints. Also, since both flows satisfy flow
conservation, it is easy to see that their sum will as well. (More generally, any linear
combination αf + βf ′ will satisfy flow conservation.)

This lemma suggests that all we need to do to increase the flow is to find any flow in the
residual network. This leads to the notion of an augmenting path.

Augmenting Paths and Ford-Fulkerson: Consider a network G, let f be a flow in G, and let
Gf be the associated residual network. An augmenting path is a simple path P from s to t
in Gf . The residual capacity (also called the bottleneck capacity) of the path is the minimum
capacity of any edge on the path. It is denoted cf (P ). (Recall that all the edges of Gf are of
strictly positive capacity, so cf (P ) > 0.) By pushing cf (P ) units of flow along each edge of
the path, we obtain a valid flow in Gf , and by the previous lemma, adding this to f results
in a valid flow in G of strictly higher value.

For example, in Fig. 7(a) we show an augmenting path of capacity 3 in the residual network
for the flow given earlier in Fig. 6. In (b), we show the result of adding this flow to every
edge of the augmenting path. Observe that because of the backwards edge (c, b), we have
decreased the flow along edge (b, c) by 3, from 8 to 5.

How is this different from the greedy algorithm? The greedy algorithm only increases flow
on edges. Since an augmenting path may increase flow on a backwards edge, it may actually
decrease the flow on some edge of the original network.

This observation naturally suggests an algorithm for computing flows of ever larger value.
Start with a flow of weight 0, and then repeatedly find an augmenting path. Repeat this
until no such path exists. This, in a nutshell, is the simplest and best known algorithm
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(b): The flow after augmentation

Fig. 7: Augmenting path and augmentation.

for computing flows, called the Ford-Fulkerson method. (We do not call it an “algorithm,”
since the method of selecting the augmenting path is not specified. We will discuss various
strategies in future lectures.) It is summarized in the code fragment below and an example
is shown in Fig. 8.

Ford-Fulkerson Network Flow
ford-fulkerson-flow(G = (V, E, s, t)) {

f = 0 (all edges carry zero flow)

while (true) {

G’ = the residual-network of G for f

if (G’ has no s-t augmenting path)

break // no augmentations left

P = any-augmenting-path of G’ // augmenting path

c = minimum capacity edge of P // augmentation amount

augment f by adding c to the flow on every edge of P

}

return f

}

There are three issues to consider before declaring this a reasonable algorithm.

• How efficiently can we perform augmentation?
• How many augmentations might be required until converging?
• If no more augmentations can be performed, have we found the max-flow?

Let us consider first the question of how to perform augmentation. First, given G and f ,
we need to compute the residual network, Gf . This is easy to do in O(n +m) time, where
n = |V | and m = |E|. We assume that Gf contains only edges of strictly positive capacity.
Next, we need to determine whether there exists an augmenting path from s to t Gf . We
can do this by performing either a DFS or BFS in the residual network starting at s and
terminating as soon (if ever) t is reached. Let P be the resulting path. Clearly, this can be
done in O(n + m) time as well. Finally, we compute the minimum cost edge along P , and
increase the flow f by this amount for every edge of P .

Two questions remain: What is the best way to select the augmenting path, and is this correct
in the sense of converging to the maximum flow? Next, we consider the issue of correctness.
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Fig. 8: The Ford-Fulkerson Algorithm. The final total flow is 5 + 5 + 8 + 3 = 21.
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Before doing this, we will need to introduce the concept of a cut.

Cuts: In order to show that Ford-Fulkerson leads to the maximum flow, we need to formalize the
notion of a “bottleneck” in the network. Intuitively, the flow cannot be increased forever,
because there is some subset of edges, whose capacities eventually become saturated with
flow. Every path from s to t must cross one of these saturated edges, and so the sum of
capacities of these edges imposes an upper bound on size of the maximum flow. Thus, these
edges form a bottleneck.

We want to make this concept mathematically formal. Since such a set of edges lie on every
path from s from t, their removal defines a partition separating the vertices that s can reach
from the vertices that s cannot reach. This suggests the following concept.

Given a network G, define a cut (also called an s-t cut) to be a partition of the vertex set
into two disjoint subsets X and Y (that is, X ∪ Y = V and X ∩ Y = ∅) such that s ∈ X
and t ∈ Y . Define the capacity of the cut (X,Y ) to be the sum of the capacities of the edges
leading from X to Y , that is,

c(X,Y ) =
∑
x∈X

∑
y∈Y

c(x, y).
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Fig. 9: (a) A cut X = {s, a}, Y = {b, c, d, t}) of capacity 5 + 3 + 8 + 5 = 21 and (b) another cut
X = {s, a, b, d}, Y = {c, t} of capacity 5 + 3 + 10 + 3 + 10 = 31.

Given a flow f in G, define the net flow across the cut (X,Y ) to be the sum of flows from X
to Y minus the sum of flows from Y to X, that is,

f(X,Y ) =
∑
x∈X

∑
y∈Y

f(x, y)−
∑
y∈Y

∑
x∈X

f(y, x)

(see Fig. 10). Observe that f(X,Y ) = −f(Y,X).

There is a notable asymmetry between net flows and cut capacities. The capacity considers
only edges directed from X to Y , whereas the net flow considers both directions. Fig. 10
shows that the net flow across two different cuts is the same, even though these cuts have
different capacities. The following lemma shows that this is generally true for all cuts.
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Fig. 10: The flow f across both cuts has the same net flow value, which is equal to |f | = 17.

Lemma: Given any network G, any flow f , and any cut (X,Y ), the flow value is equal to
the net flow across the cut, that is, f(X,Y ) = |f |.

Proof: Recall that there are no edges leading into s, and so we have |f | = fout(s) = fout(s)−
f in(s). Since all the other nodes of X must satisfy flow conservation it follows that

|f | =
∑
x∈X

(fout(x)− f in(x))

Now, observe that every edge (u, v) where both u and v are in X contributes one positive
term and one negative term of value f(u, v) to the above sum, and so all of these cancel
out. The only terms that remain are the edges that either go from X to Y (which
contribute positively) and those from Y to X (which contribute negatively). Thus, it
follows that the value of the sum is exactly f(X,Y ), and therefore |f | = f(X,Y ).

In the net flow, we consider both the flows from X to Y and (negated) from Y to X. In
contrast, in the definition of cut capacity, we only consider capacities from X to Y . To
understand why this asymmetry exists, suppose that there there are two edges (x, y) and
(y, x), where x ∈ X and y ∈ Y , where the edges have the same capacities and both carry the
same flow. The flow from y to x effectively cancels out the flow from x to y (as if you have
an “eddy” in the middle of a river, where the flow cycles around). Thus, this cycle does not
contribute to the total flow value, and so it is important to consider both in the net flow.
On the other hand, the capacity of the edge from y to x does not contribute to nor detract
from the maximum amount of flow we can push from the X-side to the Y -side of the cut.
Therefore, we do not need to consider it in computing the cut’s total capacity.

It is easy to see that it is not possible to push more flow through a cut than its capacity.
Combining this with the above lemma we have:

Lemma: Given any network G, any flow f , and any cut (X,Y ), the flow value cannot exceed
the cut’s capacity, that is, |f | ≤ c(X,Y ).

The optimality of the Ford-Fulkerson method is based on the following famous theorem, called
the Max-Flow/Min-Cut Theorem. Basically, it states that in any flow network the minimum
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capacity cut acts like a bottleneck to limit the maximum amount of flow. The Ford-Fulkerson
method terminates when it finds this bottleneck, and hence on termination, it finds both the
minimum cut and the maximum flow.

Max-Flow/Min-Cut Theorem: The following three conditions are equivalent.

(i) f is a maximum flow in G,

(ii) The residual network Gf contains no augmenting paths,

(iii) |f | = c(X,Y ) for some cut (X,Y ) of G.

Proof:

• (i) ⇒ (ii): (by contradiction) If f is a max flow and there were an augmenting
path in Gf , then by pushing flow along this path we would have a larger flow, a
contradiction.

• (ii) ⇒ (iii): If there are no augmenting paths then s and t are not connected in
the residual network (see Fig. 11(a)). Let X be those vertices reachable from s in
the residual network, and let Y be the rest. Since there is no augmenting path,
t ∈ Y , which implies that (X,Y ) forms a cut (see Fig. 11(b)). This also implies
that each forward edge (x, y) ∈ X × Y is saturated, meaning that f(x, y) = c(x, y)
(blue edges in Fig. 11(c)), and each backward edge (y, x) ∈ Y ×X carries no flow,
that is, f(y, x) = 0 (red edges in Fig. 11(c)). It follows that the flow across this cut
equals the capacity of the cut, that is, f(X,Y ) = c(X,Y ). By the previous lemma
|f | = f(X,Y ), and hence we have |f | = c(X,Y ).

(a) (b)

5/108/8 8/8s

a

d

c

8/10

5/5 8/10

b t

5/5
0/3 3/3

3/3 0/3

s

a

d

c

8

5 8

b t
28

5
3

3 3

8

2

8

2

f : Gf :

5/108/8 8/8s

a

d

c

8/10

5/5 8/10

b t

5/5
0/3

3/3

3/3 0/3

f :

3

(c)

Fig. 11: Proof of the Max-Flow/Min-Cut Theorem.

• (iii)⇒ (i): This follows directly from the previous lemma. No flow value can exceed
any cut capacity, and so if any flow’s value matches any cut’s capacity, this flow
must be maximum.

We have established that, on termination, Ford-Fulkerson generates the maximum flow. But,
is it guaranteed to terminate and, if so, how long does it take? We will consider this question
next time.
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