
CMSC 451 Dave Mount

CMSC 451: Lecture 15
NP-Completeness: General Definitions

Efficiency and Polynomial Time: Up to this point of the semester we have been building up
your “toolkit” for solving algorithmic problems efficiently. Hopefully when presented with
a computational problem, you now have a clearer idea the sorts of techniques that could
be used to solve the problem efficiently (such as divide-and-conquer, DFS, greedy, dynamic
programming, network flow).

What do we mean when we say “efficient”? If n is small, a running time of 2n may be just
fine, but when n is huge, even n2 may be unacceptably slow. Algorithm designers observed
long ago that there are two very general classes of combinatorial problems:

• Those requiring brute-force search of all feasible solutions, whose worst-case running
time is an exponential function of the input size.

• Those that are have a systematic solution, whose worst-case running time is a polynomial
function of the input size.

An algorithm is said to run in polynomial time if its worst-case running time is O(nc), where
c is a nonnegative constant. (Note that running times like O(n log n) are polynomial time,
since n logn = O(n2).) By exponential time we mean any function that is at least Ω(cn) for
a constant c > 1. Henceforth, we will use the terms “efficient” and “easy” to mean solvable
by an algorithm whose worst-case running time is polynomial in the input size. (irrespective
of whether the polynomial is n or n1000).

While the distinction between worst-case polynomial time and worst-case exponential time
is quite crude, it has a number of advantages. For example, the composition of any two
polynomials is a polynomial. (That is, if f(n) and g(n) are both polynomials, then so is
f(g(n)).) This means that, if a program makes a polynomial number of calls to a function
that runs in polynomial time, then the overall running time is a polynomial.

The Emergence of Hard Problems: Near the end of the 60’s, although there was great success
in finding efficient solutions to many combinatorial problems, there was also a growing list of
problems which were “hard” in the sense that no known efficient algorithmic solutions existed
for these problems.

A remarkable discovery was made about this time. Many of these believed hard problems
turned out to be equivalent, in the sense that if you could solve any one of them in polynomial
time, then you could solve all of them in polynomial time. Often these hard problems involved
slight generalizations to problems that are solvable in polynomial time. A list of some of these
problems is shown in Table 1.

The mathematical theory, which was developed by Richard Karp and Stephen Cook, gave
rise to the notions of P, NP, and NP-completeness. Since then, thousands of problems were
identified as being in this equivalence class. It is widely believed that none of them can be
solved in polynomial time, but there is no proof of this fact. This has given rise to arguably
the biggest open problems in computer science:

P = NP?

Lecture 15 1 Spring 2025



CMSC 451 Dave Mount

Table 1: Computationally hard problems and related (easy) counterparts.

Hard Problems (NP-complete) Easy Problems (in P)

3SAT 2SAT
Traveling Salesman Problem (TSP) Minimum Spanning Tree (MST)
Longest (Simple) Path Shortest Path
Hypergraph Matching Graph Matching
Knapsack Unary Knapsack
Independent Set in Graphs Independent Set in Trees
Integer Linear Programming Linear Programming (weak poly time)
Hamiltonian Cycle Eulerian Cycle
Balanced Cut Minimum Cut

While we will not be able to provide an answer to this question, we will investigate this
concept in the next few lectures.

Note that represents a radical departure from what we have been doing so far this semester.
The goal is no longer to prove that a problem can be solved efficiently by presenting an
algorithm for it. Instead we will be trying to show that a problem cannot be solved efficiently.
The question is how to do this?

Reasonable Input Encodings: When trying to show the impossibility of achieving a task effi-
ciently, it is important to define terms precisely. Otherwise, we might be beaten by clever
cheats. We will treat the input to our problems as a string over some alphabet that has a
constant number, but at least two, characters (e.g., a binary bit string or a Unicode encod-
ing). If you think about it for just a moment, every data structure that we have seen this
semester can be serialized into such a string, without increasing its size significantly.

How are inputs to be encoded? Observe that if you encode an integer in a very inefficient
manner, for example, using unary notation (so that 8 is represented as 11111111), rather
than an efficient encoding (say in binary or decimal1), the length of the string increases by
exponentially. Why should we care? Observe that if the input size grows exponentially, then
an algorithm that ran in exponential time for the short input size may now run in linear
time for the long input size. We consider this a cheat because we haven’t devised a faster
algorithm, we have just made our measuring yardstick much much longer.

All the representations we have seen this semester (e.g., sets as lists, graphs as adjacency lists
or adjacency matrices, etc.) are considered to be reasonable. To determine whether some new
representation is reasonable, it should be as concise as possible (in the worst case) and/or it
should be possible to convert from an existing reasonable representation to this new form in
polynomial time.

Decision Problem: Many of the problems that we have discussed involve optimization of one form
or another: find the shortest path, find the minimum cost spanning tree, find the maximum

1The exact choice of the numeric base is not important so long as it is as least 2, since all base representations
can be converted to each other with only a constant factor change in the length.

Lecture 15 2 Spring 2025



CMSC 451 Dave Mount

flow. For rather technical reasons, most NP-complete problems that we will discuss will be
phrased as decision problems.

A problem is called a decision problem if its output is a simple “yes” or “no” (or you may
think of this as True/False, 0/1, accept/reject). For example, the minimum spanning tree
decision problem might be: “Given a weighted graph G and an integer z, does G have a
spanning tree whose weight is at most z?”

This may seem like a less interesting formulation of the problem. It does not ask for the
weight of the minimum spanning tree, and it does not even ask for the edges of the spanning
tree that achieves this weight. However, our job will be to show that certain problems cannot
be solved efficiently. If we show that the simple decision problem cannot be solved efficiently,
then certainly the more general optimization problem certainly cannot be solved efficiently
either. (In fact, if you can solve a decision problem efficiently, it is almost always possible to
construct an efficient solution to the optimization problem, but this is a technicality that we
won’t worry about now.)

Language Recognition: Observe that a decision problem can also be thought of as a language
recognition problem. Define a language to be a set (finite or infinite) of strings. To express a
computational problem as a language-recognition problem, we first should be able to express
its input as a string. Given any mathematical object I, define serialize(I) to be a function that
maps I to a string. (For example, serializing a graph would involve outputting a string that
encodes all its vertices, all its edges, and any additional information such as edge weights.)

Using this, we could define a language MST encoding the Minimum Spanning Tree problem
as a language (that is, a collection of strings):

MST = {serialize(G, z) | G has a minimum spanning tree of weight at most z}.

Since it will be a hassle to continuously refer to the serialization function, we will just write
this more succinctly as

MST = {(G, z) | G has a minimum spanning tree of weight at most z}.

Now, consider any string x that is a valid serialization (that is, encoding) of a graph G and
integer z. The language recognition question “Is x a member of the language MST?” could
amount to carrying out the following procedure:

• Decode x as a graph G and integer z. (If the encoding is invalid, report “no” right away
and terminate.)

• Run any MST algorithm (e.g., Kruskal) on G to determine the weight w of MST(G).

• If w ≤ z, report “yes” and otherwise report “no”.

In the terminology of language recognition, reporting “yes” is called accepting the input x
and reporting “no” is called rejecting the input.

The Class P: We now present an important definition:

Definition: P is the set of all languages (i.e., decision problems) for which membership can
be determined in (worst case) polynomial time.

Lecture 15 3 Spring 2025



CMSC 451 Dave Mount

Intuitively, P corresponds to the set of all decisions problems that can be solved efficiently,
that is, in polynomial time. Note P is not a language, rather, it is a set of languages. A set
of languages that is defined in terms of how hard it is to determine membership is called a
complexity class. (Therefore, P is a complexity class.)

Since Kruskal’s algorithm runs in polynomial time, it follows that MST ∈ P. We could define
equivalent languages for all of the other optimization problems we have seen this year (e.g.,
shortest paths, max flow, min cut).

A Harder Example: To show that not all languages are (obviously) in P, consider the following:

HC = {G | G has a simple cycle that visits every vertex of G}.

Such a cycle is called a Hamiltonian cycle and the decision problem is the Hamiltonian Cycle
Problem. (It was named after the great 19th century mathematician and physicist, William
Rowan Hamilton, famed for the discovery of quaternions.)

Hamiltonian

(a)

Hamiltonian?

(b)

New

Fig. 1: The Hamiltonian cycle (HC) problem.

In Fig. 1(a) we show an example of a Hamiltonian cycle in a graph. If you think that the
problem is easy to solve, try to solve the problem on the graph shown in Fig. 1(b), which has
one additional vertex and one additional edge. Either find a Hamiltonian cycle in this graph
or prove than none exists. To make this even harder, imagine a million-vertex graph with
many slight variations of this pattern.

Is HC ∈ P? No one knows the answer for sure, but it is conjectured that it is not. (In fact,
we will show that later that HC is NP-complete.)

In what follows, we will be introducing a number of classes. We will jump back and forth
between the terms “language” and “decision problems”, but for our purposes they mean the
same things. Before giving all the technical definitions, let us say a bit about what the general
classes look like at an intuitive level.

Lecture 15 4 Spring 2025



CMSC 451 Dave Mount

Polynomial-Time Verification and Certificates: In order to define NP-completeness, we need
to first define NP. Unfortunately, providing a rigorous definition of NP will involve a presen-
tation of the notion of nondeterministic models of computation, and will take us away from
our main focus. (Formally, NP stands for nondeterministic polynomial time.) Instead, we
will present a very simple, “hand-wavy” definition, which will suffice for our purposes.

To do so, it is important to first introduce the notion of a verification algorithm. Many
language recognition problems that may be hard to solve, but they have the property that
they are easy to verify that a string is in the language. Recall the Hamiltonian cycle problem
defined above. As we saw, there is no obviously efficient way to find a Hamiltonian cycle in a
graph. However, suppose that a graph did have a Hamiltonian cycle and someone wanted to
convince us of its existence. This person would simply tell us the vertices in the order that
they appear along the cycle. It would be a very easy matter for us to inspect the graph and
check that this is indeed a legal cycle that it visits all the vertices exactly once. Thus, even
though we know of no efficient way to solve the Hamiltonian cycle problem, there is a very
efficient way to verify that a given graph has one. (You might ask, but what if the graph did
not have one? Don’t worry. A verification process is not required to do anything if the input
is not in the language.)

The given cycle in the above example is called a certificate. A certificate is a piece of infor-
mation which allows us to verify that a given string is in a language in polynomial time.

More formally, given a language L, and given x ∈ L, a verification algorithm is an algorithm
which, given x and a string y called the certificate, can verify that x is in the language
L using this certificate as help. If x is not in L then there is nothing to verify. If there
exists a verification algorithm that runs in polynomial time, we say that L can be verified in
polynomial time.

Note that not all languages have the property that they are easy to verify. For example,
consider the following languages:

UHC = {G | G has a unique Hamiltonian cycle}
HC = {G | G has no Hamiltonian cycle}.

There is no known polynomial time verification algorithm for either of these. For example,
suppose that a graph G is in the language UHC. What information would someone give us
that would allow us to verify that G is indeed in the language? They could certainly show us
one Hamiltonian cycle, but it is unclear that they could provide us with any easily verifiable
piece of information that would demonstrate that this is the only one.

The class NP: We can now define the complexity class NP.

Definition: NP is the set of all languages that can be verified in polynomial time.

Observe that if we can solve a problem efficiently without a certificate, we can certainly solve
given the additional help of a certificate. Therefore, P ⊆ NP. However, it is not known
whether P = NP. It seems unreasonable to think that this should be so. In other words, just
being able to verify that you have a correct solution does not help you in finding the actual

Lecture 15 5 Spring 2025



CMSC 451 Dave Mount

solution very much. Most experts believe that P ̸= NP, but no one has a proof of this. Next
time we will define the notions of NP-hard and NP-complete.

There is one last ingredient that will be needed before defining NP-completeness, namely the
notion of a polynomial time reduction. We will discuss that next time.

Lecture 15 6 Spring 2025


