
CMSC 451 Dave Mount

CMSC 451: Lecture 16
NP-Completeness: Reductions

Recap: We have introduced a number of concepts on the way to defining NP-completeness:

Decision Problems/Language recognition: Problems for which the answer is either yes
or no. These can also be thought of as language recognition problems, assuming that
the input has been encoded as a string. For example:

HC = {G | G has a Hamiltonian cycle}
MST = {(G, z) | G has a spanning tree of weight at most z}.

Recall that a Hamiltonian cycle is a simple cycle (does not repeat vertices) that visits
every vertex of the graph.

P: Class of all languages (equivalently, decision problems) which can be solved in (worst-case,
deterministic) polynomial time. We know that MST ∈ P, but we do not know whether
HC ∈ P (but we suspect not).

Verification: A problem L is verifiable in polynomial time if whenever x ∈ L (that is, x is a
“yes” instance for the decision problem) it is possible to prove this in polynomial time,
given the assistance of a certificate. For example, the language HC above is verifiable.
The certificate consists of a sequence of vertices forming the cycle. In polynomial time,
we can check that this cycle visits all the vertices of the graph exactly once. (If x /∈ L,
we don’t care about the result of verification.)

NP: Class of all languages that can be verified in polynomial time. (Formally, it stands for
“Nondeterministic Polynomial time”, since coming up with a certificate can be viewed
as a nondeterministic computation.) Clearly, P ⊆ NP, and it is widely believed (but not
known) that P ̸= NP.

In this lecture, we will discuss the concept of NP-completeness. These are, in some sense, the
hardest problems in NP. Before defining NP-completeness, we need to introduce the concept
of a reduction.

Reductions: The class of NP-complete problems consists of a set of decision problems (languages)
(a subset of the class NP) that no one knows how to solve efficiently, but if there were a
polynomial time solution for even a single NP-complete problem, then every problem in NP
would be solvable in polynomial time.

Before discussing reductions, let us just consider the following question. Suppose that there
are two problems, H and U . We know (or you strongly believe at least) that H is hard, that is
it cannot be solved in polynomial time. On the other hand, the complexity of U is unknown.
We want to prove that U is also hard. How would we do this? Effectively, we want to show
that

(H /∈ P) ⇒ (U /∈ P).

To show that U is not solvable in polynomial time, we will suppose (towards a contradiction)
that a polynomial time algorithm for U did existed, and then we will use this algorithm to

Lecture 16 1 Spring 2025



CMSC 451 Dave Mount

solve H in polynomial time, thus yielding a contradiction. In other words, we could prove
the contrapositive,

(U ∈ P) ⇒ (H ∈ P).

To make this more concrete, suppose that we had a subroutine1 that can solve any instance
of problem U in polynomial time. Given an input x for the problem H, we could translate it
into an equivalent input x′ for U . By “equivalent” we mean that x ∈ H if and only if x′ ∈ U
(see Fig. 1). Then we run our U subroutine on x′ and output whatever it outputs.

subroutine for U
yes

no
translate

x

subroutine for H

x′

Fig. 1: Reducing H to U .

It is easy to see that if U is solvable in polynomial time, then so is H. We assume that
the translation module runs in polynomial time. If so, we call this a polynomial reduction
of problem H to problem U , which is denoted H ≤P U . Richard Karp used this style of
reduction in his influential paper on NP-completeness, and for this reason, it is called a Karp
reduction.

More generally, we might consider calling the subroutine multiple times. This is called a Cook
reduction, after Stephen Cook. While Cook reductions are theoretically more powerful, Karp
reductions are simpler and work for virtually all NP-completeness proofs.

3-Colorability and Clique Cover: Let us consider an example to make this clearer. The fol-
lowing problem is well-known to be NP-complete, and hence it is strongly believed that the
problem cannot be solved in polynomial time.

3-coloring (3Col): Given a graph G, can each of its vertices be labeled with one of three
different “colors”, such that no two adjacent vertices have the same label (see Fig. 2(a)
and (b)).

Coloring arises in various partitioning problems. (E.g., You are arranging your relatives to
sit at three big tables during a wedding reception. You have pairs that don’t get along,
each represented by an edge in your graph. Can you assign them to three tables avoiding
warring pairs at the same table?) It is well known that planar graphs can be colored with
four colors, and there exists a polynomial time algorithm for doing this. But determining
whether three colors are possible (even for planar graphs) seems to be hard, and there is no
known polynomial time algorithm.

1It is important to note here that this supposed subroutine for U is a fantasy. We know (or strongly believe) that
H cannot be solved in polynomial time, thus we are essentially proving that such a subroutine cannot exist, implying
that U cannot be solved in polynomial time.

Lecture 16 2 Spring 2025



CMSC 451 Dave Mount

(a) (b)

3-colorable not 3-colorable

(c)

Clique cover (k = 3)

?

Fig. 2: 3-coloring and Clique Cover.

The 3Col problem will play the role of the known hard problem H. To play the role of U ,
consider the following problem. Given a graph G = (V,E), we say that a subset of vertices
V ′ ⊆ V forms a clique if for every pair of distinct vertices u, v ∈ V ′ (u, v) ∈ E. That is, the
subgraph induced by V ′ is a complete graph.

Clique Cover (CCov): Given a graph G = (V,E) and an integer k, can we partition the
vertex set into k subsets of vertices V1, . . . , Vk such that each Vi is a clique of G (see
Fig. 2(c)).

The clique cover problem arises in clustering. We put an edge between two nodes if they are
similar enough to be clustered in the same group. We want to know whether it is possible to
cluster all the vertices into at most k groups.

We want to prove that CCov is hard, under the assumption that 3Col is hard, that is,

(3Col /∈ P) =⇒ (CCov /∈ P).

Again, we’ll prove the contrapositive:

(CCov ∈ P) =⇒ (3Col ∈ P).

Let us assume that we have access to a polynomial time subroutine CCov(G, k). Given a
graph G and an integer k, this subroutine returns true (or “yes”) if G has a clique cover of
size k and false otherwise. How can we use this alleged subroutine to solve the well-known
hard 3Col problem? We need to find a translation, that maps an instance G for 3-coloring
into an instance (G′, k) for clique cover (see Fig. 3).

Observe that both problems involve partitioning the vertices up into groups. There are two
differences. First, in the 3-coloring problem, the number of groups is fixed at three. In the
Clique Cover problem, the number is given as an input. Second, in the 3-coloring problem, in
order for two vertices to be in the same group they should not have an edge between them.
In the Clique Cover problem, for two vertices to be in the same group, they must have an
edge between them. Our translation therefore, should convert edges into non-edges and vice
versa.

Lecture 16 3 Spring 2025



CMSC 451 Dave Mount

subroutine for yes

no
translate

G

subroutine for 3-Col

(G′, k)
Clique Cover

Fig. 3: Reducing 3Col to CCov.

This suggests the following idea for reducing the 3-coloring problem to the Clique Cover
problem. Given a graph G, let G denote the complement graph, where two distinct nodes are
connected by an edge if and only if they are not adjacent in G. Let G be the graph for which
we want to determine its 3-colorability. The translator outputs the pair (G, 3). We then feed
the pair (G′, k) = (G, 3) into a subroutine for clique cover (see Fig. 4).

(a) (b)

G1 is 3-colorable

G1 has clique cover (k = 3)

?

?

G2 is not 3-colorable

G2 has no clique cover (k = 3)

Fig. 4: Clique covers in the complement.

The following formally establishes the correctness of this reduction by showing that we have
faithfully translated an instance of 3Col to an equivalent instance of CCov.

Claim: A graph G = (V,E) is 3-colorable if and only if its complement G = (V,E) has a
clique-cover of size 3. In other words,

G ∈ 3Col ⇐⇒ (G, 3) ∈ CCov.

Proof: (⇒) If G 3-colorable, then let V1, V2, V3 be the three color classes. We claim that this
is a clique cover of size 3 for G, since if u and v are distinct vertices in Vi, then {u, v} /∈ E
(since adjacent vertices cannot have the same color) which implies that {u, v} ∈ E. Thus
every pair of distinct vertices in Vi are adjacent in G.

(⇐) Suppose G has a clique cover of size 3, denoted V1, V2, V3. For i ∈ {1, 2, 3} give
the vertices of Vi color i. We assert that this is a legal coloring for G, since if distinct

Lecture 16 4 Spring 2025



CMSC 451 Dave Mount

vertices u and v are both in Vi, then {u, v} ∈ E (since they are in a common clique),
implying that {u, v} /∈ E. Hence, two vertices with the same color are not adjacent.

It is useful to observe that the reduction was from 3Col to CCov, which means that we are
at liberty to use any value of k we like, and k = 3 was convenient. You might wonder why we
didn’t need to consider other values of k. The reason is that we didn’t need to. Of course,
if we were trying to do the reduction in the opposite direction from CCov to 3Col, we would
need to worry about this.

Polynomial-time reduction: We now take this intuition of reducing one problem to another
through the use of a subroutine call, and place it on more formal footing. Notice that in the
example above, we converted an instance of the 3-coloring problem (G) into an equivalent
instance of the Clique Cover problem (G, 3).

Definition: We say that a language (i.e. decision problem) L1 is polynomial-time reducible
to language L2 (written L1 ≤P L2) if there is a polynomial time computable function f ,
such that for all x, x ∈ L1 if and only if f(x) ∈ L2.

In the previous example we showed that 3Col ≤P CCov, and in particular, f(G) = (G, 3).
Note that it is easy to complement a graph in O(n2) (i.e. polynomial) time (e.g. flip 0’s and
1’s in the adjacency matrix). Thus f is computable in polynomial time.

Intuitively, saying that L1 ≤P L2 means that “if L2 is solvable in polynomial time, then so
is L1.” This is because a polynomial time subroutine for L2 could be applied to f(x) to
determine whether f(x) ∈ L2, or equivalently whether x ∈ L1. Thus, in sense of polynomial
time computability, L1 is “no harder” than L2.

You shouldn’t read too much into the notation or make incorrect inferences. For example,
this does not imply that L1 is necessarily easier in the sense that its running time is smaller.
It may very well be that L1 ≤P L2 and L1 takes O(n10) time to compute while L2 takes only
O(n) time. It could be that L1 is solvable in polynomial time, but L2 takes exponential time
to compute. It could be that both take exponential time to compute. What we can infer,
however, is that, if L2 is solvable in polynomial time, then L1 cannot take exponential time.

The way in which inequality is applied in NP-completeness is exactly the converse. We usually
have strong evidence that L1 is not solvable in polynomial time, and hence the reduction is
effectively equivalent to saying “since L1 is not likely to be solvable in polynomial time, then
L2 is also not likely to be solvable in polynomial time.” Thus, this is how polynomial time
reductions can be used to show that problems are as hard to solve as known difficult problems.

Summarizing the above, and recalling that the composition of poly-time functions is poly-
time, we have the following.

Lemma: Given languages L1, L2, and L3,

(i) If L1 ≤P L2 and L2 ∈ P , then L1 ∈ P .

(ii) If L1 ≤P L2 and L1 /∈ P , then L2 /∈ P .

(iii) If L1 ≤P L2 and L2 ≤P L3 then L1 ≤P L3. (Transitivity of “≤P ”)

Lecture 16 5 Spring 2025



CMSC 451 Dave Mount

NP-completeness: We now have the necessary tools to define NP-completeness. This is subset of
NP that are “hardest” in the sense that if it is known that if any one is solvable in polynomial
time, then they all are. This is made mathematically rigorous using the notion of polynomial
time reductions.

Definition: A language L is NP-hard if L′ ≤P L, for all L′ ∈ NP. (Note that L does not
need to be in NP.)

Definition: A language L is NP-complete if:

(1) L ∈ NP (that is, it can be verified in polymomial time), and

(2) L is NP-hard (that is, every problem in NP is polynomially reducible to it).

Unfortunately, showing that a problem is NP-hard seems nearly impossible, since it involves
a property of all languages in NP, an infinite set. An alternative, and much easier, way to
show that a problem is NP-complete is to employ transitivity.

Lemma: L is NP-complete if:

(1) L ∈ NP, and

(2) L′ ≤P L, where L′ is a known NP-hard language.

The reason is that, if L′ is known to be NP-hard, then we know that all L′′ ≤P L′, for all
L′′ ∈ NP. Thus, by transitivity, L′′ ≤P L, implying that L is NP-hard.

This gives us a way to prove that problems are NP-complete, once we know that one problem
is NP-complete. But how do we do this? In our next lectures, we will do this by introducing
the problem of boolean satisfiability (SAT) and present Cook’s theorem, which shows that
SAT is NP-complete. This is illustrated in Fig. 5 below.

P

NP

SAT

are reducible to SAT

P

NP

SAT

then X is NP-hard

X

If SAT ≤P X

P

NP

SAT

then Y is NP-complete

Y

If Y ∈ NP and SAT ≤P Y

NP-hard NP-complete

All problems in NP

Fig. 5: Structure of NPC and reductions. Each arrowed line L → L′ means that L ≤P L′

Lecture 16 6 Spring 2025


