
CMSC 451 Dave Mount

CMSC 451: Lecture 17
NP-Completeness: 3SAT and Independent Set

Recap: Recall the following definitions, which were given in earlier lectures.

P: The set of languages (decisions problems) solvable in (worst-case, deterministic) polyno-
mial time.

NP: The set of languages that can be verified in polynomial time (with the help of a certifi-
cate).

Polynomial reduction: L1 ≤P L2 means that there is a polynomial time computable func-
tion f such that x ∈ L1 if and only if f(x) ∈ L2. A more intuitive way to think about
this is that if we had a subroutine to solve L2 in polynomial time, then we could use it
to solve L1 in polynomial time. Polynomial reductions are transitive, that is, L1 ≤P L2

and L2 ≤P L3 implies L1 ≤P L3.

NP-Hard: L is NP-hard if for all L′ ∈ NP, L′ ≤P L. By transitivity of ≤P , we can say that
L is NP-hard if L′ ≤P L for some known NP-hard problem L′.

NP-Complete: L is NP-complete if (1) L ∈ NP and (2) L is NP-hard.

It follows from these definitions that:

� If any NP-hard problems is solvable in polynomial time, then every NP-complete prob-
lem (in fact, every problem in NP) is also solvable in polynomial time.

� If any problem in NP cannot be solved in polynomial time, then every NP-complete
problem (in fact, every NP-hard problem) cannot be solved in polynomial time.

Thus all NP-complete problems are equivalent to one another (in that they are either all
solvable in polynomial time, or none are).

Satisfiability and Cook’s Theorem: To get the ball rolling, we need to prove that there is at
least one NP-complete problem. Stephen Cook achieved this task. This first NP-complete
problem involves boolean formulas. A boolean formula consists of variables (say x, y, and z)
and the logical operations not (denoted x), and (denoted x ∧ y), and or (denoted x ∨ y).

Given a boolean formula, we say that it is satisfiable if there is a way to assign truth values
(T or F) to the variables such that it evaluates to T. (As opposed to the case where every
variable assignment results in F.) For example, consider the following formula:

F1(x, y, z) = (x ∧ (y ∨ z)) ∧ ((y ∧ z) ∨ x).

F1 is satisfiable, by the assignment x = T and y = z = F. On the other hand, the formula

F2(x, y) = (z ∨ x) ∧ (z ∨ y) ∧ (x ∧ y)

is not satisfiable since every possible assignment of truth values to x, y, and z evaluates to F.

The boolean satisfiability problem (SAT) is as follows: given a boolean formula F , is it possible
to assign truth values (T or F) to F ’s variables, so that it evaluates to true?

Lecture 17 1 Spring 2025

CMSC 451 Dave Mount

Cook’s Theorem: SAT is NP-complete.

A complete proof would take about a full lecture (not counting the week or so of background
on nondeterminism and Turing machines). Here is an intuitive justification.

SAT is in NP: The certificate consists of an assignment of values true and false to each of
the variables. We then plug the values into the formula and evaluate it. If the formula’s
value is true, we accept the certificate, and otherwise we reject it. Clearly, this can be
done in polynomial time.

SAT is NP-Hard: To show that the 3SAT is NP-hard, Cook reasoned as follows. First,
every NP-problem can be encoded as a verification program that runs in polynomial
time on a given input with a given certificate. Since the program runs in polynomial
time, we can express its execution on a specific input in machine-code, which eventually
is executed on the machine’s logic circuitry, and the function of this circuitry can be
faithfully expressed as a boolean formula. (Yes, this formula is insanely long, but it is
of polynomial length, because the algorithm’s running time is polynomial.)

The certificate (which is not given to us) can be encoded as a binary bit string, which
we can further decode into a sequence of boolean variables (where T = 1 and F = 0).

This can be done so the formula is satisfiable if and only if there is a certificate that
leads to valid verification if and only if the verification succeeds. Therefore, if you could
determine the satisfiability of this formula in polynomial time, you could determine
whether the verification algorithm succeeds.

Cook proved that satisfiability in NP-hard even for boolean formulas of a special form. To
define this form, we start by defining a literal to be either a variable or its negation, that is,
x or x. A formula is said to be in 3-conjunctive normal form (3-CNF) if it is the boolean-and
of clauses where each clause is the boolean-or of exactly three literals. For example

(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x3 ∨ x4) ∧ (x2 ∨ x3 ∨ x4)

is in 3-CNF form. The 3-CNF satisfiability problem (3SAT) is the problem of determining
whether a 3-CNF1 boolean formula is satisfiable.

NP-completeness proofs: Now that we know that 3SAT is NP-complete, we can use this fact to
prove that other problems are NP-complete. We will start with the independent set problem.

Independent Set (IS): Given an undirected graph G = (V,E) and an integer k does G
contain a subset V ′ of k vertices such that no two vertices in V ′ are adjacent to one
another.

For example, the graph G shown in Fig. 1 has an independent set of size 6. (I believe this
is the largest independent set in this graph.) Therefore (G, 6) ∈ IS but (G, 7) /∈ IS. The
independent set problem arises when there is some sort of selection problem, but there are
mutual restrictions pairs that cannot both be selected. (For example, you want to invite as
many of your friends to your party, but many pairs do not get along, represented by edges
between them, and you do not want to invite two enemies.)

1Is there something special about the number 3? 1SAT is trivial to solve. 2SAT is trickier, but it can be solved
in polynomial time (by reduction to DFS on an appropriate directed graph). kSAT is NP-complete for any k ≥ 3.

Lecture 17 2 Spring 2025

CMSC 451 Dave Mount

Independent set of size 6
G

Fig. 1: A graph with an independent set of size k = 6.

Claim: IS is NP-complete.

Proof: As with all NP-completeness proofs, there are two parts.

IS is in NP: Recall that this means that it is possible to present a polynomial time
verification procedure. This procedure is given a certificate that allows us to prove
that the given graph has an independent set of the desired size. (If the instance
does not have an independent set, then we don’t care what the certificate contains.)
Given an instance of IS consisting of a graph G = (V,E) and k, the certificate
consists of a set of k vertices. We check that we are indeed given k distinct vertices
of G, and for each pair of vertices u and v in this set, we check that there is no edge
between them in G. If so, we accept the certificate and otherwise we reject it. If
G is given by its adjacency matrix, we can do this in time O(k2) = O(n2), so the
verification runs in polynomial time.

IS is NP hard: It suffices to show that some known NP-complete problem (3SAT) is
polynomially reducible to IS, that is, 3SAT ≤P IS. (Note the direction! We show
that the known NP-hard problem is reducible to our new problem.)
Let F be a boolean formula in 3-CNF form. We wish to find a polynomial time
computable function f that maps F into a input for the IS problem, a graph G and
integer k. (This is shown schematically in Fig. 2.) That is, f(F) = (G, k), such that
F is satisfiable if and only if G has an independent set of size k.

yes

no
F

3SAT:

(G, k)

3(x1 ∨ x2 ∨ x5) ∧ . . .

Independent

Set
translate

Fig. 2: Reduction of 3-SAT to IS.

This will imply that if we could solve the independent set problem for G and k in
polynomial time, then we would be able to solve 3SAT in polynomial time. The rest
of this section presents this reduction in detail.

Since this is the first nontrivial reduction we will do, let’s take a moment to think about the
process by which we develop a reduction. An important aspect to reductions is that we do
not know whether the formula is satisfiable, we don’t know which variables should be true

Lecture 17 3 Spring 2025

CMSC 451 Dave Mount

or false, and we don’t have time to determine this. (Remember: It is NP-complete!) The
translation function f must operate without knowledge of the answer.

What is to be selected?

3SAT: Which variables are assigned to be true. Equivalently, which literals are true.

IS: Which vertices are to be placed in V ′.

Idea: Let’s create a vertex in G for each literal in each clause. Intuitively, if the literal
turns out to be true, we will put the corresponding vertex in our independent set.
Note that we don’t know which literals are true or false, so we handle them all
the same. (Unfortunately, this idea will not quite work, but we’ll fix it in our
construction.)

Requirements:

3SAT: By the nature of 3CNF (the conjunction of clauses) each clause must contain at
least one literal whose value it true.

IS: V ′ must contain at least k vertices.

Idea: Let’s organize the vertices of the graph into groups of three, called clusters, one
per clause. We’ll connect them together, so that exactly one vertex of each cluster
can be in any independent set. We’ll set k equal to the number of clauses, which will
force us to pick exactly one vertex from each cluster to be in the final independent
set. (Again, note that we don’t know which these vertices will be, so we treat them
all equally.)

Restrictions:

3SAT: If xi is assigned true, then xi must be false, and vice versa.

IS: If u and v are adjacent, then both u and v cannot be in the independent set.

Conclusion: We’ll put an edge between two vertices if they correspond to complemen-
tary literals. (We don’t know which literals will be true, but at least we konw that
we cannot select both xi and xi to be in any independent set.)

In summary, our strategy will be to create groups of three vertices, one for each literal in each
clause, which we call clause clusters (see Fig. 3). Since each clause must have at least one
true literal, we will model this by forcing the IS algorithm to select one (and only one) vertex
per clause cluster. Let’s set k to the number of clauses. But, this does not force us to select
one true literal from each clause, since we might take two from some clause cluster and zero
from another. To prevent this, we will connect all the vertices within each clause cluster to
each other. At most one can be taken to be in any independent set. Since we need to select
k vertices, this will force us to pick exactly one from each cluster.

To enforce the restriction that only one of xi and xi can be set to T, we create edges between
all vertices associated with xi to all vertices associated with xi. We call these conflict links.
A formal description of the reduction is given below. The input is a boolean formula F in
3-CNF, and the output is a graph G and integer k.

Given any reasonable encoding of F , it is an easy programming exercise to create G in
polynomial time. As an example, suppose that we are given the 3-CNF formula:

F = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3).

Lecture 17 4 Spring 2025

CMSC 451 Dave Mount

x1 x3

x2

x1 x4

x2conflict links

(x1 ∨ x2 ∨ x3) (x1 ∨ x2 ∨ x3)

Clause cluster

Fig. 3: Clause clusters for the clauses (x1 ∨ x2 ∨ x3) and (x1 ∨ x2 ∨ x5).

3SAT to IS reduction
k ← number of clauses in F
for each (clause (xa ∨ xb ∨ xc) in F)

create a clause cluster consisting of three vertices labeled xa, xb, and xc

create edges (xa, xb), (xb, xc), (xc, xa) between all pairs of vertices in the cluster
for each (variable xi)

create edges between vertex xi and all its complement vertices xi (conflict links)
return (G, k)

The reduction produces the graph shown in Fig. 4. The clauses clusters appear in clockwise
order starting from the top.

x2

x1

x3

x2 x3x1

x3

x2

x1

x3x2x1

(a)

The reduction

x2

x1

x3

x2 x3x1

x3

x2

x1

x3x2x1

(b)

correctness

x1 = x2 = T, x3 = Fk = 4

(could have chosen

x2 instead of x3)

(could have chosen

x3 instead of x1)

Fig. 4: 3SAT to IS reduction.

In our example, the formula is satisfied by the assignment x1 = T, x2 = T, and x3 = F. Note
that the literal x1 satisfies the first and last clauses, x2 satisfies the second, and x3 satisfies
the third. Observe that by selecting the corresponding vertices from the clusters, we obtain
an independent set of size k = 4.

Correctness: We’ll show that F is satisfiable if and only if G has an independent set of size k.

(⇒) : If F is satisfiable, then each of the k clauses of F must have at least one true literal.
Select such a literal from each clause. Let V ′ denote the corresponding vertices from

Lecture 17 5 Spring 2025

CMSC 451 Dave Mount

each of the clause clusters (one from each cluster). We claim that V ′ is an independent
set of size k. Since there are k clauses, clearly |V ′| = k. We only take one vertex from
each clause cluster, and we cannot take two conflicting literals to be in V ′. For each
edge of G, both of its endpoints cannot be in V ′. Therefore V ′ is an independent set of
size k.

(⇐) : Suppose that G has an independent set V ′ of size k. We cannot select two vertices
from a clause cluster, and since there are k clusters, V ′ has exactly one vertex from each
clause cluster. Note that if a vertex labeled x is in V ′ then the adjacent vertex x cannot
also be in V ′. Therefore, there exists an assignment in which every literal corresponding
to a vertex appearing in V ′ is set to true. Such an assignment satisfies one literal in each
clause, and therefore the entire formula is satisfied.

Let us emphasize a few things about this reduction:

� Every NP-complete problem has three similar elements: (a) something is being selected,
(b) something is forcing us to select a sufficient number of such things (requirements), and
(c) something is limiting our ability to select these things (restrictions). A reduction’s
job is to determine how to map these similar elements to each other.

� Our reduction did not attempt to solve the 3SAT problem. (As a sign of this, observe that
whatever we did for one literal, we did for all.) Remember this rule! If your reduction
treats some entities different other, based on what you think the final answer may be,
you are very likely making a mistake. Remember, these problems are NP-complete!

We now have the following picture of the world of NP-completeness. By Cook’s Theorem,
we know that every problem in NP is reducible to 3SAT. When we showed that IS ∈ NP, it
followed immediately that IS ≤P 3SAT. When we showed that 3SAT ≤P IS, we established
their equivalence (up to polynomial time). By transitivity, it follows that all problems in NP
are now reducible to IS (see Fig. 5).

NP-complete

P

NP

3SAT

are reducible to 3SAT

P

NP

are reducible to IS

IS

By transitivity, all problems in NPAll problems in NP (including IS)

P

NP

3SAT ≤P IS

3SAT 3SAT

ISIS

Fig. 5: Our updated picture of NP-completeness.

Lecture 17 6 Spring 2025

