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CMSC 451: Lecture 18
NP-Completeness: Clique, Vertex Cover, and Dominating Set

Recap: Last time we gave a reduction from 3SAT (satisfiability of boolean formulas in 3-CNF
form) to IS (independent set in graphs). Today we give a few more examples of reductions.
Recall that to show that a decision problem (language) L is NP-complete we need to show:

(i) L ∈ NP. (That is, given an input and an appropriate certificate, we can guess the
solution and verify whether the input is in the language), and

(ii) L is NP-hard, which we can show by giving a reduction from some known NP-complete
problem L′ to L, that is, L′ ≤P L. (That is, there is a polynomial time function that
transforms an instance L′ into an equivalent instance of L for the other problem).

Some Easy Reductions: Next, let us consider some closely related NP-complete problems:

Clique (CLIQUE): The clique problem is: given an undirected graph G = (V,E) and an
integer k, does G have a subset V ′ of k vertices such that for each distinct u, v ∈ V ′,
(u, v) ∈ E. In other words, does G have a k vertex subset whose induced subgraph is
complete? (See Fig. 1(a).)

Vertex Cover (VC): A vertex cover in an undirected graph G = (V,E) is a subset of
vertices V ′ ⊆ V such that every edge in G has at least one endpoint in V ′. The vertex
cover problem (VC) is: given an undirected graph G and an integer k, does G have a
vertex cover of size k? (See Fig. 1(b).)

Dominating Set (DS): A dominating set in a graph G = (V,E) is a subset of vertices V ′

such that every vertex in the graph is either in V ′ or is adjacent to some vertex in V ′.
The dominating set problem (DS) is: given a graph G = (V,E) and an integer k, does
G have a dominating set of size k? (See Fig. 1(c).)

Clique of size 5 Vertex cover of size 4

(a) (b) (c)

Dominating set of size 4

Fig. 1: Clique, Vertex Cover and Dominating Set.

Don’t confuse the clique (CLIQUE) problem with the clique-cover (CC) problem that we
discussed in an earlier lecture. The clique problem seeks to find a single clique of size k,
and the clique-cover problem seeks to partition the vertices into k groups, each of which is a
clique.

We have discussed the facts that cliques are of interest in applications dealing with clustering.
The vertex cover problem arises in various servicing applications. For example, you have a
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compute network and a program that checks the integrity of the communication links. To
save the space of installing the program on every computer in the network, it suffices to install
it on all the computers forming a vertex cover. From these nodes all the links can be tested.
Dominating set is useful in facility location problems. For example, suppose we want to select
where to place a set of fire stations such that every house in the city is within two minutes
of the nearest fire station. We create a graph in which two locations are adjacent if they are
within two minutes of each other. A minimum sized dominating set will be a minimum set
of locations such that every other location is reachable within two minutes from one of these
sites.

The CLIQUE problem is obviously closely related to the independent set problem (IS): Given
a graph G does it have a k vertex subset that is completely disconnected. It is not quite
as clear that the vertex cover problem is related. However, the following lemma makes this
connection clear as well (see Fig. 2). Given a graph G, recall that G is the complement
graph where edges and non-edges are reverse. Also, recall that A \B denotes set resulting by
removing the elements of B from A.

G

V ′ is a clique

of size k in G
⇐⇒

G

V ′ is a independent set

of size k in G
⇐⇒ V \ V ′ is a vertex cover

of size n− k in G

G
V ′ V ′

V \ V ′

Fig. 2: Clique, Independent set, and Vertex Cover.

Lemma: Given an undirected graph G = (V,E) with n vertices and a subset V ′ ⊆ V of size
k. The following are equivalent:

(i) V ′ is a clique of size k for the complement, G

(ii) V ′ is an independent set of size k for G

(iii) V \ V ′ is a vertex cover of size n− k for G, (where n = |V |)
Proof:

� (i) ⇒ (ii): If V ′ is a clique for G, then for each u, v ∈ V ′, (u, v) is an edge of G
implying that (u, v) is not an edge of G, implying that V ′ is an independent set for
G.

� (ii) ⇒ (iii): If V ′ is an independent set for G, then for each u, v ∈ V ′, (u, v) is
not an edge of G, implying that every edge in G is incident to a vertex in V \ V ′,
implying that V \ V ′ is a vertex cover for G.

� (iii) ⇒ (i): If V \ V ′ is a vertex cover for G, then for any u, v ∈ V ′ there is no edge
(u, v) in G, implying that there is an edge (u, v) in G, implying that V ′ is a clique
in G.
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Thus, if we had an algorithm for solving any one of these problems, we could easily translate
it into an algorithm for the others. In particular, we have the following.

Theorem: CLIQUE is NP-complete.

Proof:

� CLIQUE ∈ NP: Consider an instance (G, k) for CLIQUE. The certificate consists of
k vertices of G forming the set V ′. We can check that all pairs of vertices in V ′ are
adjacent (e.g., by inspection of O(k2) = O(n2) entries of the adjacency matrix). If
so, the verification succeeds and we accept, and otherwise the verification fails and
we reject.

� IS ≤P CLIQUE: We want to show that given an instance of the IS problem (G, k),
we can produce an equivalent instance of the CLIQUE problem in polynomial time.
The reduction function f inputs G and k, and outputs the pair (G, k). Clearly this
can be done in polynomial time. By the above lemma, this instance is equivalent.

Theorem: VC is NP-complete.

Proof:

� VC ∈ NP: Consider an instance (G, k) for VC. The certificate consists of k vertices
of G forming the set V ′. In O(m) = O(n2) time we can check that every edge in G
has at least one endpoint in V ′. If so, the verification succeeds and we accept, and
otherwise the verification fails and we reject.

� IS ≤P VC: We want to show that given an instance of the IS problem (G, k), we
can produce an equivalent instance of the VC problem in polynomial time. The
reduction function f inputs G and k, computes the number of vertices, n, and then
outputs (G,n − k). Clearly this can be done in polynomial time. By the above
lemma, these instances are equivalent.

We reiterate that in each of the above reductions, the reduction function merely translates
similar elements between the two problems. It does not know whether G has an independent
set or not. Even if it did, it does not know which vertices are in the independent set.

Dominating Set: In spite of the superficial similarity to Vertex Cover, Dominating Set is a bit
trickier to show NP-completeness. As usual the proof has two parts. First, we show that
DS ∈ NP (see below). The trickier part is showing the some known NP-complete problem
is reducible to DS. We will show that VC ≤P DS. That is, we want to show that there
is a polynomial time function, which given an instance (G, k) for VC, produces an instance
(G′, k′) for DS, such that G has a vertex cover of size k if and only if G′ has a dominating set
of size k′.

How to we translate between these problems? The key difference is the covering condition.

� VC: Every edge is incident to a vertex in V ′.

� DS: Every vertex is either in V ′ or is adjacent to a vertex in V ′.

Thus the translation must somehow map the notion of “incident edge” to “adjacent vertex”.
Because incidence is a property of edges, and adjacency is a property of vertices, this suggests
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that the reduction function maps edges of G into vertices in G′, such that an incident edge
in G is mapped to an adjacent vertex in G′.

This inspires the following idea. We will insert a vertex into the middle of each edge of the
graph. In other words, for each edge (u, v), we will create a new mid-edge vertex, called wuv,
and replace the edge (u, v) with the two edges (u,wuv) and (v, wuv) (see Fig. 3). The fact
that u was incident to edge (u, v) has now been replaced with the fact that u is adjacent to
the corresponding vertex wuv. We still need to dominate the neighbor v. To do this, we will
leave the edge (u, v) in the graph as well. Let G′ be the resulting graph.

G
f

G′
u v u v

wuv

Fig. 3: Gadget for the VC ≤P DS reduction.

This is still not quite correct though. Define an isolated vertex to be one that is incident to
no edges. If u is isolated it can only be dominated if it is included in the dominating set.
Since it is not incident to any edges, it does not need to be in the vertex cover. Let VI denote
the isolated vertices in G, and let nI denote the number of isolated vertices. The number of
vertices to request for the dominating set will be k′ = k + nI . Okay, we are now ready to
state the result and prove it.

Theorem: DS is NP-complete.

Proof:

� DS ∈ NP: Given an instance (G, k) for DS, we guess the certificate, which consists of
the k vertices that will form the dominating set. We then verify that these vertices
form a dominating set, by checking that every vertex of G is either in this set or is
adjacent to a vertex in this set. If so, we output “yes” and otherwise “no”. (Again,
if G has a dominating set of size k, one of these guesses will work, and we correctly
classify G as having a dominating set of size k. Otherwise, all fail and we classify
G as not having such a dominating set.)

� VC ≤P DS: We want to show that given an instance of the VC problem (G, k),
we can produce an equivalent instance of the DS problem in polynomial time. We
create a graph G′ as follows. Initially G′ = G. For each edge (u, v) in G we create
a new vertex wuv in G′ and add edges (u,wuv) and (v, wuv) in G′. Let I denote the
number of isolated vertices and set k′ = k + nI . Output (G′, k′). This reduction
illustrated in Fig. 4. Note that every step can be performed in polynomial time.
To establish the correctness of the reduction, we need to show that G has a vertex
cover of size k if and only if G′ has a dominating set of size k′.
(⇒) First we argue that if V ′ is a vertex cover for G, then V ′′ = V ′ ∪ VI is a
dominating set for G′. Observe that

|V ′′| = |V ′ ∪ VI | ≤ k + nI = k′.

Note that |V ′∪VI | might be of size less than k+nI , if there are any isolated vertices
in V ′. If so, we can add any vertices we like to make the size equal to k′ (see Fig. 5).
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G
f

G′
isolated

k = 3

k′ = k + nI = 4

Fig. 4: Dominating set reduction with k = 3 and one isolated vertex.

To see that V ′′ is a dominating set, first observe that all the isolated vertices are
in V ′′ and so they are dominated. Second, each of the mid-edge vertices wuv in G′

corresponds to an edge (u, v) in G implying that either u or v is in the vertex cover
V ′. Thus wuv is dominated by the same vertex in V ′′ Finally, each of the nonisolated
original vertices v is incident to at least one edge in G, and hence either it is in V ′

or else all of its neighbors are in V ′. In either case, v is either in V ′′ or adjacent to
a vertex in V ′′ (see Fig. 5).

G

G has VC size k = 3

G′

G′ has DS size k′ = k + nI = 4

=⇒

Fig. 5: ⇒ part of the correctness of the VC to DS reduction (where k = 3 and I = 1).

(⇐) Conversely, we claim that if G′ has a dominating set V ′′ of size k′ = k + nI

then G has a vertex cover V ′ of size k. Note that all nI isolated vertices of G′ must
be in the dominating set (see Fig. 6). First, let V ′′′ = V ′′ \ VI be the remaining k
vertices. We might try to claim something like: V ′′′ is a vertex cover for G. But
this will not necessarily work, because V ′′′ may have vertices that are not part of
the original graph G.
However, we claim that we never need to use any of the newly created mid-edge
vertices in V ′′′. In particular, if some vertex wuv ∈ V ′′′, then modify V ′′′ by replacing
wuv with u. (We could have just as easily replaced it with v.) Observe that the
vertex wuv is adjacent to only u and v, so it dominates itself and these other two
vertices. By using u instead, we still dominate u, v, and wuv (because u has edges
going to v and wuv). Thus by replacing wu,v with u we dominate the same vertices
(and potentially more). Let V ′ denote the resulting set after this modification. (This
is shown in Fig 6.)
We claim that V ′ is a vertex cover for G. If, to the contrary there were an edge (u, v)
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G′ GG

G has VC size k′ − nI = 3

G′

DS using regular vertices

=⇒ =⇒

G has DS size k′ = 4

isolated

Fig. 6: ⇐ part of the correctness of the VC to DS reduction (where k = 3 and I = 1).

of G that was not covered (neither u nor v was in V ′) then the mid-edge vertex wuv

would not be adjacent to any vertex of V ′′ in G′, contradicting the hypothesis that
V ′′ was a dominating set for G′.

Whew! In conclusion, DS is NP-complete.

Summary: In this lecture we expanded our set of known NP-complete problems to include Clique,
Vertex Cover, and Dominating Set.
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