
CMSC 451 Dave Mount

CMSC 451: Lecture 19
NP-Completeness: Hamiltonian Cycle

Hamiltonian Cycle: Today we consider the Hamiltonian cycle problem in directed graphs. Given
a digraph G = (V,E), the question is whether there exists a simple cycle that visits all the
vertices. The fact that the cycle is simple, implies that every vertex is visited exactly once
(except for the first and last vertex.) There are three natural variants: Hamiltonian cycle
in undirected graphs, and Hamiltonian paths in both directed and undirected graphs. A
Hamiltonian path is a simple path that visits every vertex (exactly once). All four problems
are NP-complete. We will present a proof of the Hamiltonian cycle problem for directed
graphs and leave the others as exercises. Formally, let us define

DHC = {G : G is a directed graph with a Hamiltonian cycle}.

An important related problem is the traveling salesman problem (TSP). Given a complete
graph (or digraph) with nonnegative edge weights, compute the cycle of minimum weight
that visits all the vertices. Since the graph is complete, such a cycle will always exist. We can
formulate as a decision problem as follows: given a complete weighted graph G, and integer
w, does there exist a Hamiltonian cycle of total weight at most w? TSP is also NP-complete,
which we will leave as an exercise.

Another related problem is called the Eulerian circuit problem. In this problem, we want
to compute a cycle that visits every edge exactly once. This is related to a famous math
problem, called the Seven Bridges of Königsburg. This problem can be solved in polynomial
time by depth-first search. (Again, we’ll leave this as an exercise.)

Component Design: Up to now, most of the reductions that we have seen (e.g., for clique, vertex
cover, and dominating set) are of a relatively simple variety. They are sometimes called local
replacement reductions, because they operate by making some local change throughout the
graph.

The reduction for Hamiltonian cycle is more complicated, involving a technique called a
component design. This method involves designing special subgraphs, sometimes called com-
ponents or gadgets whose job it is to enforce a particular constraint of the problem. Very
complex reductions may involve the creation of many gadgets. This one involves the con-
struction of only one.

DHC Gadget: The main part of the proof is a reduction showing that 3SAT ≤P DHC. Our
reduction will take a 3SAT formula F as input. Recall that such a formula is a conjunction
(logical “and”) of clauses, each of which is a disjunction (logical “or”) of three literals, each
of which is either a variable xj or its complement xi.

Our reduction will map each clause to a special subgraph, called a DHC gadget (see Fig. 1).
This subgraph has three incoming edges and three outgoing edges, one for each of the clause’s
literals. Let’s call the incoming edges i1, i2 and i3, and let’s call the outgoing edges o1, o2 and
o3.

Our overall plan will be to string these gadgets together in chains, one per literal. We will
connect the output from one gadget to the input of the next such that the literals agree (that

Lecture 19 1 Spring 2025

https://en.wikipedia.org/wiki/Seven_Bridges_of_K%C3%B6nigsberg


CMSC 451 Dave Mount

i1
i2
i3

o1
o2
o3

i1
i2
i3

o1
o2
o3

Gadget What it looks like inside

Fig. 1: The DHC gadget.

is, connecting the xj output of one gadget to the xj input of the next and connect the xj
output of one gadget to the xj input of the next). The strategy is that for each true literal
in a clause, the Hamiltonian cycle will travel in along the corresponding input and out along
the corresponding output. The DHC gadget is carefully designed to satisfy the following
property.

Lemma: (DHC Gadget Properties)

(i) Given any nonempty subset of k input edges, there exists a set of k vertex-disjoint
paths that together visit all the vertices of the gadget exactly once and connect each
input edge, ij , with its corresponding output edge, oj .

(ii) Given any nonempty set of k vertex-disjoint simple paths from entry to exit that
hit all the vertices, each path that enters along ij it must exist on the corresponding
output oj .

Proof: For (i), this is literally a “proof by picture”(see Fig. 2). We show the case of one,
two, and three entry edges. (There are a total of 23− 1 = 7 nonempty subsets of inputs,
but due to the symmetry of the gadget, it is easy to see how the omitted cases work.)

i1
i2
i3

o1
o2
o3

i1
i2
i3

o1
o2
o3

i1
i2
i3

o1
o2
o3

i1
i2
i3

o1
o2
o3

i1
i2
i3

o1
o2
o3

i1
i2
i3

o1
o2
o3

1 Entry

2 Entries

3 Entries

Fig. 2: DHC gadget and examples of path traversals.

The proof of (ii) is a bit harder to see.

• In the case of one entry, in order to hit all the vertices, it is necessary to exit each
three-vertex cluster by cycling one turn around. Since there are six clusters of three

Lecture 19 2 Spring 2025



CMSC 451 Dave Mount

vertices, on exit the path returns to the same output edge.

• In the case of three entries, it is also easy to see that the only way to hit all the
vertices exactly once is for the paths to travel straight through, implying that each
input is routed to the corresponding output.

• In the case of two inputs, in order to hit every vertex once, one of the two paths
needs to hit two vertices in each of the cluster and the other hits one. If you play
around with the gadget, you will see that the choice of which path does which is
fixed. This causes the two paths to cycle around. After three cycles they return to
the same positions, but their order is switched. After six cycles, they return both
to the same position and in the same order.

To see whether you understand the gadget, you might ask the question of why we used exactly
6 three-vertex cycles? Why a multiple of three? Would 3 work? Would 9? Would 12?

The Reduction: Our objective is to show that 3SAT ≤P DHC. That is, we need to present a
polynomial-time function f , which given an boolean formula F for 3SAT, outputs a directed
graph G such that F is satisfiable if and only if G has a Hamiltonian cycle. Recall that a
satisfying a 3-CNF formula corresponds to assigning truth values to each variable so that
every clause has at least one true literal.

Intuitively, we can think of the DHC gadgets as forming a string of holiday light bulbs along
a wire. There will be one DHC gadget for each clause in the formula. Each gadget has three
entry edges and three exits edges. Think of this like three wires entering and exiting each of
these bulbs. Each variable xj will have two paths which we can choose from. One corresponds
to setting xj = T and taking the other path corresponds to setting xj = F (or equivalently
to setting xj = T). We think of the wire that carries the actual truth value for each variable
to be the “live wire” that carries electrical current. Ultimately, we want every one of these
light bulbs to light up. This will happen if at least one of the wires that is carrying current
travels through the light bulb. This is equivalent to saying that at least one of the literals in
this clause is true, which is exactly what we need for the formula to be satisfiable. Of course,
we don’t know whether each variable will be true or false. The idea is that the string of light
bulbs will be illuminated if and only if we can assign truth values to all the variables so that
the resulting current paths hit every bulb.

xj

xj+1

Clauses containing xj

Clauses containing xj

xj

xj

T

F

from xj−1

from xj−1

xj
xj

xjxj

xj
xj

xj

T

F

Fig. 3: General structure of reduction from 3SAT to DHC.

Lecture 19 3 Spring 2025



CMSC 451 Dave Mount

For each variable xj , we will create a special variable vertex, named xj . Each vertex xj will
have two outgoing edges, one labeled T and the other labeled F. Intuitively, any Hamiltonian
cycle must visit each variable vertex xj . If it chooses to take the T edge, we interpret this as
setting xj = T and taking the other edge corresponds to setting xj = F. The path on the T
edge will be strung through all the clause gadgets that contain the literal xj , and the path
along the F edge will be strung through all the clause gadgets that contain the literal xj (see
Fig. 3).

To connect all of these paths together, we create a start vertex s and add an edge (s, x1).
The two paths leading out from x1 will converge at x2, where again two paths will diverge,
joining at x3. We continue in this manner until reaching the final vertex xn. Its two paths will
converge at a final vertex t. To complete the cycle, we generate an edge (t, s). An example
of the reduction is shown in Fig. 4.

to x3

F = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x1 ∨ x3) ∧ (x1 ∨ x3 ∨ x2)

x1
x2
x3

x1
x2
x3

x2
x1
x3

x1
x3
x2

x1

x2

x3

to x2

to x3
to x2

T
T

F

F
F

s

t
to s

T

Fig. 4: Example of the 3SAT to DHC reduction. Wires are color-coded (x1 is green, x2 is blue,
and x3 is red).

The following lemma establishes the correctness of this reduction.

Lemma: The boolean formula F is satisfiable if and only if the digraph G produced by the
above reduction has a Hamiltonian cycle.

Proof:

(⇒) : Suppose that F has a satisfying assignment. We claim that G has a Hamiltonian cycle.
This path starts at s and goes immediately to the variable vertex x1. From now on,
whenever it reaches a variable vertex, it follows the outgoing T edge if this variable is
assigned true and the F edge otherwise. Depending on which path is taken, it travels
through all the gadgets involving this literal. When the final clause containing this literal
is visited, it goes to the next variable vertex, xj+1, and the process continues from there.

Because this is a satisfying assignment, every clause will have at least one true literal, and
hence each clause gadget will be visited by at least one path. By DHC Gadget Property
(i), whenever a path enters a gadget on some entry edge, it exits on the corresponding
exit edge (see Fig. 5). (That is, wires never get crossed.)

On finishing with the path for the last variable xn, we go to the end vertex t, and from
there we go back to s, thus completing the Hamiltonian cycle. Since every clause is
visited, every vertex is visited exactly once, and therefore, G has a Hamiltonian cycle.

(⇐) : Suppose that G has a Hamiltonian cycle. Since the cycle must visit all the vertices, we
may assume it starts with s. Since this is a Hamiltonian cycle, every vertex is visited,
and hence, every clause gadget is visited by some number of paths (either 1, 2, or 3).

Lecture 19 4 Spring 2025



CMSC 451 Dave Mount

Satisfying assignment hits every gadget at least once

to x3

s

x1
x2
x3

x1
x2
x3

x2
x1
x3

x1
x3
x2

x1

x2

x3

to x2

to x3
to x2

T

T
t

F

to s

Fig. 5: A satisfying assignment (x1 = T, x2 = T, x3 = F), yields a Hamiltonian cycle.

From s the path visits x1. Whenever it visits a variable vertex, the path takes either
the outgoing edge labeled T or the edge labeled F. If it takes the former, we assign this
variable true, and otherwise we assign it the value false.

We assert that this is a satisfying assignment for the formula. By the DHC Gadget
Properties (ii), whenever a Hamiltonian cycle enters a gadget, it must exit along the
exit edge corresponding to its entry edge. Therefore, each of the paths from the variable
vertices behaves like a wire going through all gadgets in which this literal appears, and
then going on to the next variable. When it visits the last variable, its only option is to
go to t and then back to s.

Since this is a Hamiltonian cycle, every gadget must be visited by at least one path,
and hence every clause must have at least one literal whose assigned value is true. (To
illustrate this, consider the non-satisfying assignment in Fig. 6. At least one clause has
all literals evaluate to false, and hence the cycle misses the associated gadget. However,
this contradicts the hypothesis that G has a Hamiltonian cycle.) Since every clause has
at least one true literal, this is a satisfying assignment.

Non-satisfying assignment misses at least one gadget

to x3
x1
x2
x3

x1
x2
x3

x2
x1
x3

x1
x3
x2

x1

x2

x3

to x2

to x3
to x2

T
F

s

t
to s

F

Fig. 6: A non-satisfying assignment (x1 = F, x2 = T, x3 = F), does not yield a Hamiltonian cycle.

Final Conclusion: We can now present the proof that DHC is NP-complete. Recall that we need
to show that (i) DHC ∈ NP and (ii) some known NP-complete problem is reducible to it.

Theorem: Directed Hamiltonian Cycle (DHC) is NP-complete.

Proof:

• (DHC ∈ NP) The certificate consists of the sequence of vertices in the cycle. In
O(n) time, we can check each consecutive pair to see that it is an edge in G. If so,
the verification accepts, and if not, the verification rejects.

• (3SAT ≤P DHC) This follows from correctness of the reduction presented earlier.

Lecture 19 5 Spring 2025


