CMSC /714
Lecture /
MPI w/OpenMP and PETSc

Alan Sussman



OpenMP + MPI

* Some applications can take advantage of both
message passing and threads

* Questions is what to do to obtain best overall
performance, without too much programming difficulty

* Choices are all MPI, all OpenMP, or both

* For both, common option is outer loop parallelized with message
passing, inner loop with directives to generate threads

* Applications studied:
* Hydrology — CGWAVE
* Computational chemistry — GAMESS

* Linear algebra — matrix multiplication and QR
factorization

* Seismic processing — SPECseis95
e Computational fluid dynamics — TLNS3D
* Computational physics - CRETIN

CMSC 714 - Alan Sussman



Types of parallelism in the codes

* For message passing parallelism (MPI)

* Parametric — coarse-grained outer loop, essentially task parallel

e Structured domains — domain decomposition with local
operations — structured and unstructured grids

* Direct solvers — linear algebra, lots of communication and load
balancing required — message passing works well for large
systems of equations

e Shared memory parallelism (OpenMP)

e Statically scheduled parallel loops — one large, or several
smaller loops, non-nested parallel

 Parallel regions — merge loops into one parallel region to
reduce overhead of directives

* Dynamic load balanced — when static scheduling leads to load
imbalance from irregular task sizes

CMSC 714 - Alan Sussman 4



CGWAVE

* Finite elements - MPIl parameter space evaluation at outer loop,
OpenMP sparse linear equation solver in inner loops

* Speedup using 2 levels of parallelism allows modeling larger bodies of
water in a reasonable amount of time

* Boss-worker strategy for dynamic load balancing in MPI part/component

* Solver for each component solves large sparse linear system with
OpenMP to parallelize

* On SGI Origin 2000 (distributed shared memory machine), use first touch
rule to migrate data for each component to the processor that uses it

* Performance results show that best performance obtained using both
MPI and OpenMP, with a combination of MPI workers and OpenMP
threads that depends on the problem/grid size

* And for load balancing, a lot fewer MPI workers than components

CMSC 714 - Alan Sussman 5



GAMESS

* Computational chemistry — molecular dynamics —
MPI across cluster, OpenMP within each node

* Built on top of Global Arrays package — for
distributed array operations
* Which in turn uses MPI (paper says PVM) and OpenMP

*Linear algebra solvers mainly use OpenMP for
dynamic scheduling and load balancing

* MPI versions of parts of code are complex, but can
provide higher performance for large problems

* Performance results on “medium” sized problem
from SPEC (Standard Performance Evaluation
Corp.) are for a small system (4 8-processor Alpha
machines) connected by Memory Channel

CMSC 714 - Alan Sussman



Linear algebra

* Hybrid parallelism with MPI for scalability and OpenMP
for load balancing, for MM and QR factorization

* On IBM SP system with multiple 4-processor nodes

* Studies tradeoffs of hybrid approach for linear algebra
algorithms vs. only using MPI (running 4 MPI processes
per node)

* Use OpenMP for load balancing and decreasing
communication costs within a hode

* Also helps to hide communication latency behind other
operations — important for overall performance

* QR factorization results on “medium” sized matrices
show that adaptive load balancing is better than
dynamic loop scheduling within a node

CMSC 714 - Alan Sussman



SPECsels95

* For gas and oil exploration
e Uses FFTs and finite-difference solvers

* Original message passing version (in PVM) is SPMD,
OpenMP starts serial then starts an SPMD parallel
section

* In OpenMP version, shared data is only boundaries, everything
else local (like PVM version)

* OpenMP calls all in Fortran — no C OpenMP compiler — caused
difficulties for privatizing C global data, and thread issues
(binding to processors, OS calls)

* Code scales equally well for PVM and OpenMP, on SGl
Power Challenge (a DSM machine)

* This is a weak argument, because of likely poor PVM message
passing performance (in general, and especially on DSM
systems

CMSC 714 - Alan Sussman



TLNS3D

* CFD in Fortran77, uses MPI across grids and OpenMP to parallelize each
grid

* Multiple, non-overlapping grids/blocks that exchange data at
boundaries periodically

* Static block assignment to processors — divide blocks into groups of
about equal number of grid points for each processor

* Boss-worker execution model for MPI level, then parallelize 3D loops
for each block with OpenMP

* Many loops, so need to be careful about affinity of data objects to
processors across loops

* Hard to balance MPI workers vs. OpenMP threads per block — tradeoff
minimizing load imbalance vs. communication and synchronization cost

* Seems to work best on DSMs, but can be done well on distributed
memory systems

* No performance results!

CMSC 714 - Alan Sussman



CRETIN

* Physics application with multiple levels of message
passing and thread parallelism

* Ported onto both distributed memory system
(1464 4-processor nodes) and DSM (large SGI
Origin 2000)

* Complex structure, with 2 parts discussed

* Atomic kinetics — multiple zones with lots of
computation per zone — maps to either MPl or OpenMP

* Load balancing across zones is the problem — requires complex
dynamic algorithm that benefits both versions

* Radiation transport — mesh/grid sweep across multiple
zones, suitable for both MPI and OpenMP

* Two MPI options to parallelize, which one works best depends on
problem size — one needs a transpose operation for the MPI
version

* No performance results

CMSC 714 - Alan Sussman 10



PETSc

* Portable, Extensible Toolkit for Scientific Computation

e Library to encapsulate commonly used functions and
data structures for numerically solving partial
differential equations

* Targeted at message passing for scalability, but hides it
(mostly) from application

* Uses object-oriented programming techniques
* Data encapsulation
* Polymorphism
* Inheritance
* but implemented in C, so no compiler support

* Essentially SPMD style programming, but w/o explicit
message passing

CMSC 714 - Alan Sussman 11



6 guiding principles

* For performance
e overlap communication and computation

* determine details of repeated communication patterns,
and optimize message passing across multiple calls
(inspector/executor model)

* allow user to decide when communication occurs (if
needed)

* allow user to aggregate data for later communication

* For ease of use

* allow user to work on distributed objects (arrays) without
knowing which processor owns which data elements

* manage communication at higher levels, on objects,
instead of directly using message passing



Distributed Objects

* Low level data structures
* Vectors
* Matrices
* Index Sets

* Low level algorithms
 Create and assemble a vector or matrix — vector scatter/gather,
sparse matrix examples in paper
* Higher level algorithms
* PDE solvers
* Linear and non-linear equation solvers
* Time steppers
* Preconditioners

* All functions take an MPI_Comm as an argument

CMSC 714 - Alan Sussman 13



Six Guiding Principles (again)

* Managing communication within higher level data
structures and algorithms

* MPI calls generated to perform communication needed to
perform higher level ops on distributed objects

* Implication is no optimizations across calls

* Overlap communication and computation

* Separate start and end of complex operations, so other
computations can go on in between, like MPI non-blocking
operations

* Precomputing communication patterns

* Generate a pattern of sends/receives for an operation on a
distributed object (which may need communication), then
reuse the pattern for subsequent data movement operations

» Often called inspector/executor model

CMSC 714 - Alan Sussman 14



Guiding Principles (cont.)

* Programmer management of communication

e User can explicitly start and end communication via specific
PETSc calls

e Often to enable overlap of communication with computation

* Work on distributed objects, not on individual data
elements

* Avoids programmer having to move data between application
data structures and library data structures

e Can build PETSc data structures from any process, with data for
any process (not just local to a process)
* This is what is meant by “assembly”

* Aggregate data for communication
* To minimize number of messages

 Communication cost proportional to number of messages, plus
per byte cost

CMSC 714 - Alan Sussman 15



PETSc status

e Current version is 3.22

e See https://petsc.org

* Integrated with TAO library for large-scale optimization
problems

* GPU support is available
* Through CUDA for NVIDIA GPUs
* Through OpenCL,HIP, Kokkos for AMD and Intel GPUs

* Interfaces for C, C++, Fortran, Python

CMSC 714 - Alan Sussman

16


https://petsc.org/

	Slide 1: CMSC 714 Lecture 7 MPI w/OpenMP and PETSc
	Slide 3: OpenMP + MPI
	Slide 4: Types of parallelism in the codes
	Slide 5: CGWAVE
	Slide 6: GAMESS
	Slide 7: Linear algebra
	Slide 8: SPECseis95
	Slide 9: TLNS3D
	Slide 10: CRETIN
	Slide 11: PETSc
	Slide 12: 6 guiding principles
	Slide 13: Distributed Objects
	Slide 14: Six Guiding Principles (again)
	Slide 15: Guiding Principles (cont.)
	Slide 16: PETSc status

