
CMSC 714
Lecture 9

Profiling – gprof and HPCToolkit

Alan Sussman

Performance analysis

•Parallel performance of a program might not be
what the developer expects

•How do we find performance bottlenecks?

•Two parts to performance analysis: measurement
and analysis/visualization

•Simplest tool: timers in the code and printf

3CMSC 714 - Alan Sussman and Abhinav Bhatele

Using timers

4

double start, end;

double phase1, phase2, phase3;

start = MPI_Wtime();

... phase1 code ...

end = MPI_Wtime();

phase1 = end - start;

start = MPI_Wtime();

... phase2 ...

end = MPI_Wtime();

phase2 = end - start;

start = MPI_Wtime();

... phase3 ...

end = MPI_Wtime();

phase3 = end - start;

Phase 1 took 2.45 s

Phase 2 took 11.79 s

Phase 3 took 4.37 s

CMSC 714 - Alan Sussman and Abhinav Bhatele

Performance Tools

•Tracing tools
• Capture entire execution trace
• Vampir, Score-P

•Profiling tools
• Provide aggregated information
• Typically use statistical sampling
• Gprof, pyinstrument, cprofile

•Many tools can do both
• TAU, HPCToolkit, Projections

5CMSC 714 - Alan Sussman and Abhinav Bhatele

Metrics recorded

•Counts of function invocations

•Time spent in code

•Number of bytes sent

•Hardware counters

•To fix performance problems — we need to connect
metrics to source code

6CMSC 714 - Alan Sussman and Abhinav Bhatele

Tracing tools

•Record all the events in the program with
timestamps

•Events: function calls, MPI events, etc.

7

Vampir visualization: https://hpc.llnl.gov/software/development-environment-software/vampir-vampir-server

CMSC 714 - Alan Sussman and Abhinav Bhatele

https://hpc.llnl.gov/software/development-environment-software/vampir-vampir-server

Profiling tools

• Ignore the specific times at
which events occurred

•Provide aggregate
information about different
parts of the code

•Examples:
• gprof, perf

• mpiP
• HPCToolkit, caliper

•Python tools: cprofile,
pyinstrument, scalene

8

gprof data in hpctView

CMSC 714 - Alan Sussman and Abhinav Bhatele

Calling contexts, trees, and graphs

•Calling context or call path:
Sequence of function
invocations leading to the
current sample

•Calling context tree (CCT):
dynamic prefix tree of all call
paths in an execution

•Call graph: merge nodes in a
CCT with the same name into a
single node but keep caller-
callee relationships as arcs

9CMSC 714 - Alan Sussman and Abhinav Bhatele

Calling context trees, call graphs, …

10

File

Line number

Function name

Callpath

Load module

Process ID

Thread ID

Contextual information

Time

Flops

Cache misses

Performance Metrics

Calling context tree (CCT)
Call graph

CMSC 714 - Alan Sussman and Abhinav Bhatele

gprof

•Goal is to collect profiling information
• Static and dynamic call graphs
• How many times each function is called
• How much time is spent in each function, and in the

functions that a function calls

•Process is to first compile with a flag (-pg for C/C++
compilers typically)
• To insert calls to monitoring code at entry (and/or exit)

from a function

•Then the program will generate monitoring output
in a file (by default gmon.out) that can be post-
processed by the gprof program to produce
profiling information

CMSC 714 - Alan Sussman and Abhinav Bhatele 11

gprof (cont.)

• Since the profiling info is collected during a run, can
combine info collected over multiple runs (presumably
with different input, to exercise different program
paths)

• Execution time info is not collected via timing routines,
but via sampling
• To minimize profiling overhead

• Basically sample periodically which function is currently
executing and assign the time for that interval to the function
currently running – only requires interval timer from the OS

• The time interval for each sample needs to be short enough to
not miss too many function calls (so depends on processor
speed/performance)

CMSC 714 - Alan Sussman and Abhinav Bhatele 12

gprof (cont.)

•Output includes number of times each function is
called, the time spent in each function, and the time
spent in a given function and all the functions it calls
•One difficulty is with mutually recursive functions

• Problem is that call graph then has a cycle
• So how to assign time for a function and everything it calls

• The overall goal is to use the profiling info to optimize
the program
• And the most important thing to know to do that is where your

program is spending its time!

• So use gprof iteratively to optimize parts of your
program

•Available in Linux and other Unix systems

CMSC 714 - Alan Sussman and Abhinav Bhatele 13

HPCToolkit
• Set of tools for measurement, analysis, attribution, and

presentation of application performance for sequential
and parallel (multi-threaded and message-passing)
programs

• Capabilities/goals include:
• collecting performance measurements of fully optimized

executables without adding instrumentation
• analyzing application binaries to understand the structure of

optimized code
• correlating measurements with program structure
• presenting the resulting performance data in a top-down way

to facilitate rapid (human) analysis

•Available at http://hpctoolkit.org/
• As part of DOE Exascale Computing Project (ECP) tools

CMSC 714 - Alan Sussman and Abhinav Bhatele 14

http://hpctoolkit.org/

HPCToolkit features
• Language independent

• Works on binaries, so works with C, C++, Fortran, …

•No code instrumentation
• So no instrumentation overhead
• Uses statistical sampling to measure performance

•Avoids ”blind spots”
• Works on optimized and stripped binaries, including

(dynamically and statically linked) libraries, so requires binary
analysis

• Keeps track of context to help understand behavior of
modern OO software designs
• Uses call path profiling to assign costs to specific execution

paths

• Presents measurement data in a hierarchical way
• To support a top-down analysis methodology that helps users

to quickly locate bottlenecks

CMSC 714 - Alan Sussman and Abhinav Bhatele 15

Features (cont.)

•Hierarchical attribution and presentation of
measurement data
• From function, to loop, to statement, etc., to make data

easier for users to understand and take action on

•Measurement and analysis is scalable
• Sampling-based measurement limits the size of the

performance data to be collected and analyzed, even on
large parallel systems

CMSC 714 - Alan Sussman and Abhinav Bhatele 16

HPCToolkit workflow

• Collect performance measurements while application
executes via sampling – hpcrun
• Can user hardware performance counters if available
• Can deal with threads and MPI calls

•Analyze program binaries to recover program structure,
and map to source code (if available) – hpcstruct

• Produce performance database by combining
application structure with performance measurements
– hpcprof

• Explore performance database to find bottlenecks –
hpcviewer

• Prototype visualization in space and time of a parallel
program – hpctraceview – now part of hpcviewer

CMSC 714 - Alan Sussman and Abhinav Bhatele 17

	Slide 1: CMSC 714 Lecture 9 Profiling – gprof and HPCToolkit
	Slide 3: Performance analysis
	Slide 4: Using timers
	Slide 5: Performance Tools
	Slide 6: Metrics recorded
	Slide 7: Tracing tools
	Slide 8: Profiling tools
	Slide 9: Calling contexts, trees, and graphs
	Slide 10: Calling context trees, call graphs, …
	Slide 11: gprof
	Slide 12: gprof (cont.)
	Slide 13: gprof (cont.)
	Slide 14: HPCToolkit
	Slide 15: HPCToolkit features
	Slide 16: Features (cont.)
	Slide 17: HPCToolkit workflow

