
CMSC 714
Lecture 16

Cloud Computing –
Spark and Mesos

Alan Sussman

Notes

•Group research project proposals
• Feedback sent

• Next deadline is interim report on April 18 – status,
issues, etc.

•Midterm exam on April 15
• Sample questions posted next week

CMSC 714 - Alan Sussman 2

Spark
• Single engine for distributed data processing

• SQL

• stream processing

• machine learning

• graph processing

• Basic idea is to enable composing different types of
processing into a single application
• without copying data, so reuse of data and doing operations

in memory is fundamental

• Key abstraction is Resilient Distributed Dataset (RDD)
• a fault tolerant collection of objects (data items) partitioned

across a cluster that can be operated on in parallel

• Functional programming API in Scala, Java, Python, and
R

CMSC 714 - Alan Sussman 3

Spark (cont.)
•Users/developers write local functions that operate on

RDDs
• RDDs evaluated by Spark runtime lazily

• that means when they are needed, so only when one needs to
be instantiated – that is the difference between a
transformation and an action

• enables creating an execution plan for a whole set of data
transformations (like in an RDBMS)

•User can enable sharing an RDD by making it persistent
in memory (spilled to disk if too big)
• this is a big difference from MapReduce implementations

• Fault tolerance – RDDs can be recomputed if lost by
keeping track of lineage (how they were computed)
• Can use different external systems for persistent

storage
• e.g., HDFS, S3, Cassandra

CMSC 714 - Alan Sussman 4

Spark (cont.)
• Additional functionality comes from building libraries on

top of basic abstractions
• SparkSQL for relational queries – but no transactions
• DataFrames – RDDs of records with a known schema, used for tables

in R and Python
• Spark Streaming for incremental stream processing on discretized

streams – split input data into small batches (e.g., data that arrives
over 200ms) that is combined with state stored in RDDs to produce
new results
• Spark Structured Streaming is a bit different, with interface more like

SparkSQL, and is what is now supported
• GraphX – graph computation interface – vertex-based computations

for graphs, and graphs partitioned across nodes
• MLlib – machine learning library

• Claim is that performance is comparable to specialized
systems for each kind of processing

• Last note is that they do admit that synchronization in
Spark means it does not work well for latency sensitive
computations

CMSC 714 - Alan Sussman 5

Mesos
•A meta-scheduler – to enable multiple cluster

computing frameworks (e.g., Hadoop, OpenMPI) to
share cluster resources
• an alternative to a centralized scheduler

• Basic idea is that the resources register with Mesos,
Mesos offers resources to frameworks, frameworks
decide whether to accept or reject the resource offers
• so frameworks do their own scheduling, once they obtain

resources from Mesos

•One catch is that someone has to tell Mesos how to
decide which resources to offer to which frameworks
• this is a policy decision (e.g., fair sharing), and there is a

Mesos plugin interface for the policy module

• similar to how HPC cluster schedulers work – SLURM, Torque

CMSC 714 - Alan Sussman 6

Mesos (cont.)
• Basic architecture is one Mesos master/boss that

frameworks communicate with, and a Mesos worker
daemon on each cluster node
• each worker process offers resources through its daemon
• boss offers resources to frameworks, which they can accept or

reject
• frameworks decide which offered resources to use – through a

scheduler they register with the boss
• framework can then launch tasks on acquired resources

through their executor process

•Uses Zookeeper for fault tolerance
• a distributed coordination service, to deal with faults in the

Mesos master – enables having hot spare copies of the boss –
leader election

• use soft state so new boss can reconstruct internal state from
worker daemons and framework schedulers

CMSC 714 - Alan Sussman 7

Mesos (cont.)
• Efficiency and robustness

• Framework can set filters, to tell boss which offers it will always
reject – so boss won't even try such offers

• To give incentive for frameworks to respond quickly to offers,
Mesos counts outstanding resource offers toward a
framework’s allocation of a cluster – so they don't hang onto
resources they may not use

• If a framework does not respond for a while, Mesos rescinds a
resource offer

• Performance
• simulation study shows Mesos provides both good latency to

schedulers that need resources, and good cluster utilization,
compared to a centralized scheduler

• Performance best for frameworks that have short tasks to run,
and jobs that can scale elastically – so probably not so good for
HPC workloads

CMSC 714 - Alan Sussman 8

	Slide 1: CMSC 714 Lecture 16 Cloud Computing – Spark and Mesos
	Slide 2: Notes
	Slide 3: Spark
	Slide 4: Spark (cont.)
	Slide 5: Spark (cont.)
	Slide 6: Mesos
	Slide 7: Mesos (cont.)
	Slide 8: Mesos (cont.)

