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Notes

•Research project questions?

•Midterm exam next Tuesday in class

•Remember to send in questions on papers when 
assigned
• I forgot to add names for today, but have added them for 

tomorrow and next Thursday
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Lamport Clocks
•Distributed systems are inherently concurrent, 

asynchronous, and nondeterministic, so executing 
programs on multiple machines requires 
coordination

• Lamport introduce methods to define an ordering 
of events

•Want to create a partial ordering of events 
(instructions, message passing, or whatever)

•Define a happens before relation: a → b
• event a happened before event b
• event a can causally affect event b
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Happens Before Relation

1. If a and b are events in the same process, and a 
comes before b, then a → b

2. If a is sending of a message by one process and b 
is the receipt of the same message by another 
process, then a → b

3. If a → b and b → c then a → c (transitivity)

• Partial Order: Unordered events are concurrent
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Logical Clocks
• Clock Condition: For any events a, b: if a → b then 

C<a>  <  C<b>

•Holds if C1 and C2 are satisfied:
• C1. If a and b are events in Process Pi, and a comes before b, 

then Ci<a>  <  Ci<b>

• C2. If a is the sending of a message by process Pi and b is the 
receipt of that message by process Pj, then Ci<a>  <  Cj<b>

• Implementation
• IR1. Each process Pi increments Ci between any two successive 

events

• IR2a. If event a is the sending of a message m by Process P i, 
then the message m contains a timestamp Tm = Ci<a>.

• IR2b. Upon receiving a message m, process Pj sets Cj greater 
than or equal to its present value and greater than Tm.
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Total Ordering

•Partial ordering not always enough

•Prioritize processes Pi ≺ Pj

•Total ordering a ⇒ b :

If a is in Pi and b is in Pj, then a ⇒ b iff
• Ci<a>  <  Cj<b>
• Ci<a>  =  Cj<b> and Pi ≺ Pj
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Logical Clocks

• Issues with physical clocks (clock drift, etc.)

•For many purposes, it is sufficient to know the 
order in which events occurred

•BUT: Logical clocks cannot be used to order events 
outside the system
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Strong Clock Condition

•Approach does not take into account external 
events

•Define new set of events L

• Strong Clock Condition: For any events a, b in L:
         

if a ⇨ b then C<a>  <  C<b>

•Achieve strong clock condition with physical clocks
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Physical Clocks
•Run continuously
•PC1. Clocks must run at approximately the correct 

rate
• ∃k. k << 1 , |dCi(t)/dt-1| < k

•PC2. Clocks must be synchronized
• |Ci(t) - Cj(t)| < ε

•Minimum message delay μ
• Ci(t+ μ) – Cj(t) > 0

•Satisfying Strong Clock Condition:
• IR1: Each event occurs at a precise instant
• IR2:

• If Pi sends a message m at physical time t, then m contains a 
timestamp Tm = Ci(t).

• Upon receiving a message m at time t’, process Pj sets Cj(t’) equal 
to the maximum of Cj(t’) and (Tm + μm)
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Race Conditions
•What is the problem?

• Implementing multi-threaded programs is difficult and error 
prone

•Who cares?
• Developers (and users) of multi-threaded systems

•What is the approach?
• Provide tool support to automatically verify synchronization
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Data Races
•Data Race

• More than 1 thread has read or write access to a variable 
without synchronization, and at least one is doing a write

•Static race detection
• Analyze the program code, so does not require that the 

program execute
• Difficult analysis, if sound (does not produce false 

negatives) tends to produce many false positives (lack of 
completeness)

• Getting both soundness and completeness is undecidable
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Data Races (cont.)

•Dynamic race detection
• Analyze the events from a single program execution to 

determine the occurrence of a race condition in one 
program execution

• Can be sound and complete, but only for that execution
• Want to have the single input, single execution (SISE) 

property, so that a single execution instance is sufficient 
to determine the existence of a data race for a given 
input.

• Two basic kinds – based on happens-before (HB) relation 
(Lamport), and based on locksets (e.g.,  Eraser algorithm)
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HB-based Dynamic Race Detection
• Inefficient since large amount of information is 

required
•Basic idea has 3 parts:

• track the HB-relation within each thread
• keep an access history as a sequence of logical 

timestamps for each shared resource (variable or memory 
location)

• validate that, for every resource, critical accesses are 
ordered by the HB-relation

•While the analysis can be sound and complete, the 
article shows that with a more general notion of 
data races, the HB-based analysis does not report 
all possible data races so is not sound wrt that 
definition
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Lockset-based Detection

•Targeted at programs that use critical sections as 
their primary synchronization model

•Validates that a program execution adheres to a 
programming policy, called a locking discipline
• E.g., threads that access a common memory location 

must hold a mutual exclusion lock when performing the 
access

•Compliance with the locking discipline implies that 
executions don’t have a data race

•Validation can be done with static or dynamic 
analysis, or both
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Lockset-based algorithm

• Each thread tracks at run-time the set of locks it currently 
holds – i.e. via a shadow location for each variable that holds 
the current lockset

• On the first access to a shared variable, the shadow memory 
is initialized with the lockset of the current thread. 

• On subsequent accesses, the lockset in shadow memory is 
updated by intersecting it with the lockset of the accessing 
thread. 

• If the intersection is empty and the variable has been 
accessed by different threads, a potential data race is 
reported.

• Lockset-based detection is sound, and has the SISE property
• Detection is incomplete, since accesses that violate the 

locking discipline may be ordered by other means of 
synchronization – so can get false positives
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Static Data Race Detection

• Pragmatic methods look for deviations from common 
programming practice
• Examples include FindBugs for Java from UMD, RacerX for large OS 

codes

• Methods based on dataflow analysis
• May-happen-in-parallel analysis (MHP) to compute the may-happen-

in-parallel relation among statements in different threads
• Inter-process precedence graph for determining anomalies in 

programs with post-wait synchronization

• Type-based methods
• To model and express data protection and locking policies in data and 

method declarations

• Model checking
• To explore every possible control flow-path and variable value 

assignment for undesired program behavior
• Since that is computationally intractable, models of the data and 

program are explored
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