
CMSC 714
Lecture 17

Lamport Clocks and Race Conditions

Alan Sussman

(with thanks to Chris Ackermann)

Notes

•Research project questions?

•Midterm exam next Tuesday in class

•Remember to send in questions on papers when
assigned
• I forgot to add names for today, but have added them for

tomorrow and next Thursday

CMSC 714 - Alan Sussman 2

Lamport Clocks
•Distributed systems are inherently concurrent,

asynchronous, and nondeterministic, so executing
programs on multiple machines requires
coordination

• Lamport introduce methods to define an ordering
of events

•Want to create a partial ordering of events
(instructions, message passing, or whatever)

•Define a happens before relation: a → b
• event a happened before event b
• event a can causally affect event b

CMSC 714 - Alan Sussman 3

Happens Before Relation

1. If a and b are events in the same process, and a
comes before b, then a → b

2. If a is sending of a message by one process and b
is the receipt of the same message by another
process, then a → b

3. If a → b and b → c then a → c (transitivity)

• Partial Order: Unordered events are concurrent

CMSC 714 - Alan Sussman 4

Logical Clocks
• Clock Condition: For any events a, b: if a → b then

C<a> < C

•Holds if C1 and C2 are satisfied:
• C1. If a and b are events in Process Pi, and a comes before b,

then Ci<a> < Ci

• C2. If a is the sending of a message by process Pi and b is the
receipt of that message by process Pj, then Ci<a> < Cj

• Implementation
• IR1. Each process Pi increments Ci between any two successive

events

• IR2a. If event a is the sending of a message m by Process P i,
then the message m contains a timestamp Tm = Ci<a>.

• IR2b. Upon receiving a message m, process Pj sets Cj greater
than or equal to its present value and greater than Tm.

CMSC 714 - Alan Sussman 5

Total Ordering

•Partial ordering not always enough

•Prioritize processes Pi ≺ Pj

•Total ordering a ⇒ b :

If a is in Pi and b is in Pj, then a ⇒ b iff
• Ci<a> < Cj
• Ci<a> = Cj and Pi ≺ Pj

CMSC 714 - Alan Sussman 6

Logical Clocks

• Issues with physical clocks (clock drift, etc.)

•For many purposes, it is sufficient to know the
order in which events occurred

•BUT: Logical clocks cannot be used to order events
outside the system

CMSC 714 - Alan Sussman 7

Strong Clock Condition

•Approach does not take into account external
events

•Define new set of events L

• Strong Clock Condition: For any events a, b in L:

if a ⇨ b then C<a> < C

•Achieve strong clock condition with physical clocks

CMSC 714 - Alan Sussman 8

Physical Clocks
•Run continuously
•PC1. Clocks must run at approximately the correct

rate
• ∃k. k << 1 , |dCi(t)/dt-1| < k

•PC2. Clocks must be synchronized
• |Ci(t) - Cj(t)| < ε

•Minimum message delay μ
• Ci(t+ μ) – Cj(t) > 0

•Satisfying Strong Clock Condition:
• IR1: Each event occurs at a precise instant
• IR2:

• If Pi sends a message m at physical time t, then m contains a
timestamp Tm = Ci(t).

• Upon receiving a message m at time t’, process Pj sets Cj(t’) equal
to the maximum of Cj(t’) and (Tm + μm)

CMSC 714 - Alan Sussman 9

Race Conditions
•What is the problem?

• Implementing multi-threaded programs is difficult and error
prone

•Who cares?
• Developers (and users) of multi-threaded systems

•What is the approach?
• Provide tool support to automatically verify synchronization

CMSC 714 - Alan Sussman 10

Data Races
•Data Race

• More than 1 thread has read or write access to a variable
without synchronization, and at least one is doing a write

•Static race detection
• Analyze the program code, so does not require that the

program execute
• Difficult analysis, if sound (does not produce false

negatives) tends to produce many false positives (lack of
completeness)

• Getting both soundness and completeness is undecidable

CMSC 714 - Alan Sussman 11

Data Races (cont.)

•Dynamic race detection
• Analyze the events from a single program execution to

determine the occurrence of a race condition in one
program execution

• Can be sound and complete, but only for that execution
• Want to have the single input, single execution (SISE)

property, so that a single execution instance is sufficient
to determine the existence of a data race for a given
input.

• Two basic kinds – based on happens-before (HB) relation
(Lamport), and based on locksets (e.g., Eraser algorithm)

CMSC 714 - Alan Sussman 12

HB-based Dynamic Race Detection
• Inefficient since large amount of information is

required
•Basic idea has 3 parts:

• track the HB-relation within each thread
• keep an access history as a sequence of logical

timestamps for each shared resource (variable or memory
location)

• validate that, for every resource, critical accesses are
ordered by the HB-relation

•While the analysis can be sound and complete, the
article shows that with a more general notion of
data races, the HB-based analysis does not report
all possible data races so is not sound wrt that
definition

CMSC 714 - Alan Sussman 13

Lockset-based Detection

•Targeted at programs that use critical sections as
their primary synchronization model

•Validates that a program execution adheres to a
programming policy, called a locking discipline
• E.g., threads that access a common memory location

must hold a mutual exclusion lock when performing the
access

•Compliance with the locking discipline implies that
executions don’t have a data race

•Validation can be done with static or dynamic
analysis, or both

CMSC 714 - Alan Sussman 14

Lockset-based algorithm

• Each thread tracks at run-time the set of locks it currently
holds – i.e. via a shadow location for each variable that holds
the current lockset

• On the first access to a shared variable, the shadow memory
is initialized with the lockset of the current thread.

• On subsequent accesses, the lockset in shadow memory is
updated by intersecting it with the lockset of the accessing
thread.

• If the intersection is empty and the variable has been
accessed by different threads, a potential data race is
reported.

• Lockset-based detection is sound, and has the SISE property
• Detection is incomplete, since accesses that violate the

locking discipline may be ordered by other means of
synchronization – so can get false positives

CMSC 714 - Alan Sussman 15

Static Data Race Detection

• Pragmatic methods look for deviations from common
programming practice
• Examples include FindBugs for Java from UMD, RacerX for large OS

codes

• Methods based on dataflow analysis
• May-happen-in-parallel analysis (MHP) to compute the may-happen-

in-parallel relation among statements in different threads
• Inter-process precedence graph for determining anomalies in

programs with post-wait synchronization

• Type-based methods
• To model and express data protection and locking policies in data and

method declarations

• Model checking
• To explore every possible control flow-path and variable value

assignment for undesired program behavior
• Since that is computationally intractable, models of the data and

program are explored

CMSC 714 - Alan Sussman 16

	Slide 1: CMSC 714 Lecture 17 Lamport Clocks and Race Conditions
	Slide 2: Notes
	Slide 3: Lamport Clocks
	Slide 4: Happens Before Relation
	Slide 5: Logical Clocks
	Slide 6: Total Ordering
	Slide 7: Logical Clocks
	Slide 8: Strong Clock Condition
	Slide 9: Physical Clocks
	Slide 10: Race Conditions
	Slide 11: Data Races
	Slide 12: Data Races (cont.)
	Slide 13: HB-based Dynamic Race Detection
	Slide 14: Lockset-based Detection
	Slide 15: Lockset-based algorithm
	Slide 16: Static Data Race Detection

