
CMSC 714
Lecture 19

Runtime Parallelization

Gary Jackson and Alan Sussman

Notes

•Group Project interim report due tomorrow

•Midterm grades will be posted by middle of next
week

CMSC 714 - Alan Sussman 2

Outline

•Overview

•Compiler-driven: Multiblock Parti

• Library-driven: Global Arrays

•Conclusion

CMSC 714 - Alan Sussman 3

Overview

•Writing good parallel programs for distributed
memory systems is hard.

• Idea: abstraction on top of message passing to
get results
• We can do this where communication is regular:

block-structured applications
• Trade off: (somewhat) reduced performance for

reduced effort

CMSC 714 - Alan Sussman 4

Multiblock Parti

•Provide High Performance Fortran-like language
enhancements to support block-structured
applications
• HPF is a predecessor to PGAS languages, that

provides ways to express data distribution across
nodes, operations on array sections, parallel loops,
etc.

•Treat things statically, where we can

•Use run-time support where we can't establish
compile-time bounds

CMSC 714 - Alan Sussman 5

Runtime Support

•Regular_Section_Move_Sched
• Schedule a regular section move
• Accommodates block, cyclic, and block-cyclic

distributions when the bounds & strides are known at
run-time

•Overlap_Cell_Fill_Sched: schedule moves for
overlap / ghost cells

CMSC 714 - Alan Sussman 6

Compiler Support

•Additional HPF-like directives

•Static analysis for data distribution

• Insert calls for runtime workload partitioning
based on data distribution

CMSC 714 - Alan Sussman 7

Static Analysis

•Done on for_all loop parameters

•Categorize one of three ways
• No communication necessary
• Copy overlap (ghost) regions
• Copy regular sections

CMSC 714 - Alan Sussman 8

Experiment: Overhead

•Extra time from
library calls and
schedule building
isn't too bad

CMSC 714 - Alan Sussman 9

Experiment:
Multiblock Code

•Within 20% of hand-
parallelized F77
•Difference between

compiler-
parallelized & hand-
parallelized F90 is
mostly in computing
loop bounds and
searching for
previously-used
schedules

CMSC 714 - Alan Sussman 10

Experiment:
Multigrid Code

•Within 10% of
hand-
parallelized
code

CMSC 714 - Alan Sussman 11

Experiment:
Compiler Optimizations

• Performance stinks if
schedules are not
saved
(Version I)
•Hand-implemented

reuse improves over
runtime reuse (II vs.
III)
•Un-implemented

optimization for loop-
bounds in
subroutines also
improves
(Version IV)

CMSC 714 - Alan Sussman 12

Global Arrays
• Library for parallelization abstraction
• On distributed memory systems (clusters)
• SPMD model

• Idea is to program as if shared memory, but move
data between distributed memory and local
memory as needed
• Only operate on local data within each process

•Compatible with MPI, so can mix GA calls with MPI
calls as needed
• Built on top of ARMCI (Aggregate Remote Memory Copy

Interface) library for one-sided communication (put/get)
– portable and efficient

• One-sided can be more efficient than send/receive, as
shown for some applications, since less synchronization

CMSC 714 - Alan Sussman 13

Global Arrays

•Programmer can map both ways between global
and local views of data objects (arrays)
• But only compute on local view

•GA is also aware of SMP (multi-core) nodes
• To support “mirrored view” – caching distributed

memory data in shared memory for multiple
processes to use

•Also has direct support for ghost cells
• To avoid distributed to local copies for structured grid

applications
• And for periodic boundary conditions

•Paper also talks about sparse data management
• But not clear how efficient GA is for computing with

sparse matrices/vectors

CMSC 714 - Alan Sussman 14

Global Arrays
•Data parallel interfaces to operate on global arrays

• To interface with other libraries like BLAS, SCALAPACK to
perform data parallel collective operations

•Disk Resident Arrays allow extending global arrays to
out-of-core
• Basically distributed memory stored on (local) disks
• With operations to move data between disks (instead of

distributed memory) and local memory in each process

• Support for mapping global arrays onto subsets of
processors
•Many similarities to Multiblock Parti, but also supports

copies from global to local view
• Performance results show good scaling on several

applications for parallel systems available at that time
• All the applications employ large, dense, multi-dim data grids
• And can take advantage of both low-latency and high-

bandwidth networks (through ARMCI)

CMSC 714 - Alan Sussman 15

Overall Conclusion

•We can get close to hand-coded performance
with these systems

•Are they easier to use?

•Current status:
• Multiblock Parti no longer supported, other than

inside applications and other parallel libraries
• Global Arrays still supported by PNNL, latest stable

version on GitHub 3 weeks ago, and now uses ComEx
(Communication Runtime for Extreme Scale) for
communication, which by default uses MPI (and uses
shared memory across processes on the same node)

CMSC 714 - Alan Sussman 16

CMSC 714 - Alan Sussman 17

	Slide 1: CMSC 714 Lecture 19 Runtime Parallelization
	Slide 2: Notes
	Slide 3: Outline
	Slide 4: Overview
	Slide 5: Multiblock Parti
	Slide 6: Runtime Support
	Slide 7: Compiler Support
	Slide 8: Static Analysis
	Slide 9: Experiment: Overhead
	Slide 10: Experiment: Multiblock Code
	Slide 11: Experiment: Multigrid Code
	Slide 12: Experiment: Compiler Optimizations
	Slide 13: Global Arrays
	Slide 14: Global Arrays
	Slide 15: Global Arrays
	Slide 16: Overall Conclusion
	Slide 17

