
Jason Ansel

Research Scientist, Meta

PyTorch 2: Faster machine learning
through dynamic Python bytecode
transformation

The Great ML Framework Debate

Eager Mode

• Preferred by users
• Easier to use programming model
• Easy to debug
• PyTorch is a primarily an eager mode framework

Graph Mode

• Preferred by backends and framework builders
• Easier to optimize with a compiler
• Easier to do automated transformations

PyTorch’s many attempts at graph modes
torch.jit.trace

● Record + replay
● Unsound
● Can give incorrect results because it ignores Python part of program

torch.jit.script

● AOT parses Python into graph format
● Only works on ~45% of real world models
● High effort to “TorchScript” models

Lazy Tensors (Torch XLA)

● Graph capture through deferred execution
● High overheads
● Performance cliffs

PyTorch Models Are Not Static Graphs

Due to history of being an eager model framework, PyTorch users have written
models in ways where whole program graphs are impossible

In our benchmark suite 20% of models, do one (or more) of:

• Convert tensors native Python types (x.item(), x.tolist(), int(x), etc)
• Use other frameworks (numpy/xarray/etc) for part of their model
• Data dependent Python control flow or other dynamism
• Exceptions, closures, generators, classes, etc

All of these violate the assumptions of most graph mode backends.

PyTorch Usability/Performance Tradeoff

Performance

U
sa

bi
lit

y

Numerous Existing Graph Modes

PyTorch 1.x PyTorch 2.0
Goal

cmodel = torch.compile(model)

INTRODUCING

TorchDynamo:
Out-of-the-box graph capture for PyTorch

torch.compile() with a
user-defined backend

my_compiler() called with FX graph:
opcode name target args
------------- ------- ---------------- ----------------
placeholder a a ()
placeholder b b ()
call_function abs_1 torch.abs (a,)
call_function add operator.add (abs_1, 1)
call_function truediv operator.truediv (a, add)
call_method sum_1 sum (b,)
call_function lt operator.lt (sum_1, 0)
output output output ((truediv, lt),)

my_compiler() called with FX graph:
opcode name target args
------------- ------ ---------------- -----------
placeholder b b ()
placeholder x x ()
call_function mul operator.mul (b, -1)
call_function mul_1 operator.mul (x, mul)
output output output ((mul_1,),)

my_compiler() called with FX graph:
opcode name target args
------------- ------ ---------------- ---------
placeholder b b ()
placeholder x x ()
call_function mul operator.mul (x, b)
output output output ((mul,),)

Output:

TorchInductor:
A PyTorch Native Compiler

TORCHINDUCTOR PRINCIPLES

PyTorch Native

Similar abstractions to
PyTorch eager to allow
support for nearly all of
PyTorch, with a thin
translation layer.

Python First

A pure python compiler
makes TorchInductor
easy to understand and
hackable by users.
Generates Triton and
C++.

Breadth First

Early focus on supporting a
wide variety of operators,
hardware, and
optimization. A general
purpose compiler, that can
scale.

TORCHINDUCTOR TECHNOLOGIES

Define-By-Run
Loop-Level IR

Direct use of Python
functions in IR
definitions allows for
rapidly defining lowering
with little boilerplate.

Dynamic Shapes &
Strides

Uses SymPy to reason
about shapes, indexing,
and managing guards.
Symbolic shapes from
the ground up.

Reuse State-Of-The-Art
Languages

Generates output code in
languages popular for
writing handwritten
kernels:
● Triton for GPUs
● C++/OpenMP for CPUs

What is Triton?
A new programming language for highly performant GPU kernels

● Higher level than CUDA
● Lower level than preexisting DSLs
● Allows non-experts to write fast custom kernels

Users define tensors (i.e., blocks of data) in SRAM, and modify
them using torch-like operators

https://triton-lang.org
https://github.com/openai/triton
by Philippe Tillet @ OpenAI

Triton: an intermediate language and compiler for tiled neural
network computations

Philippe Tillet, H. T. Kung, David Cox

In Proceedings of the 3rd ACM SIGPLAN International
Workshop on Machine Learning and Programming Languages
(MAPL 2019)

https://doi.org/10.1145/3315508.3329973

TorchInductor Overview
AotAutograd

Decomposes into
smaller operator set

Capture forwards +
backwards

Some inductor specific
decomps included in this
step

Inductor Graph Lowerings

Remove views, broadcasting,
and simplify indexing

Rematerialize vs reuse
decisions

Layout tuning and optimization

Loop order

Inductor Scheduling

Horizontal / vertical fusion
decisions

Reduction fusions

Tiling

Memory planning and buffer
reuse

In-place memory buffers

Autotuning / kernel selection

Wrapper Codegen

Outer code that calls
kernels and allocates
memory

(Replaces interpreter)

Backend Codegen

Triton

C++

Halide (new)

TorchInductor Example

Run with:
TORCH_COMPILE_DEBUG=1 python inductor_demo.py

Input Code ATen FX Graph Define-by-run IR Scheduling/Fusion Output Triton Output Wrapper

TorchInductor Example

Input Code ATen FX Graph Define-by-run IR Scheduling/Fusion Output Triton Output Wrapper

TorchInductor Example

Input Code ATen FX Graph Define-by-run IR Scheduling/Fusion Output Triton Output Wrapper

torch/_inductor/scheduler.py

Scheduler.can_fuse(buf0, buf1)
 True

Scheduler.score_fusion(buf0, buf1)
 (True, True, 33554432, -1)

● True/True is category of fusion (pointwise+pointwise)
● 33554432 is estimated memory bandwidth saved by

fusion: 8192*1024*4
● -1 is distance in input graph

TorchInductor Example

Input Code ATen FX Graph Define-by-run IR Scheduling/Fusion Output Triton Output Wrapper

TorchInductor Example

Input Code ATen FX Graph Define-by-run IR Scheduling/Fusion Output Triton Output Wrapper

TorchInductor Example

Input Code ATen FX Graph Define-by-run IR Scheduling/Fusion Output Triton Output Wrapper

TorchInductor Example: C++ Output
Change device=’cuda’ to device=’cpu’

NVIDIA A100 PERFORMANCE

Geomean speedup over PyTorch eager using float16
Higher is better

NVIDIA A100 PERFORMANCE

Cumulative distribution function of speedups over PyTorch eager.

NVIDIA A100 PERFORMANCE

Geomean speedup over PyTorch eager on 45 models from HuggingFace using fp16

Live PyTorch 2.0 Q&A Series:

https://www.youtube.com/@PyTorch

PyTorch Dev Podcast (by ezyang)

https://pytorch-dev-podcast.simplecast.com/

Code:

https://github.com/pytorch/pytorch/tree/master/torch/_dynamo

https://github.com/pytorch/pytorch/tree/master/torch/_functorch/a

ot_autograd.py

https://github.com/pytorch/pytorch/tree/master/torch/_inductor

We are hiring!

Reach out to pengwu@meta.com

