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The Great ML Framework Debate

Eager Mode

• Preferred by users
• Easier to use programming model
• Easy to debug
• PyTorch is a primarily an eager mode framework

Graph Mode

• Preferred by backends and framework builders
• Easier to optimize with a compiler
• Easier to do automated transformations



PyTorch’s many attempts at graph modes
torch.jit.trace

● Record + replay
● Unsound
● Can give incorrect results because it ignores Python part of program

torch.jit.script

● AOT parses Python into graph format
● Only works on ~45% of real world models 
● High effort to “TorchScript” models

Lazy Tensors (Torch XLA)

● Graph capture through deferred execution
● High overheads
● Performance cliffs



PyTorch Models Are Not Static Graphs

Due to history of being an eager model framework, PyTorch users have written 
models in ways where whole program graphs are impossible

In our benchmark suite 20% of models, do one (or more) of:

• Convert tensors native Python types (x.item(), x.tolist(), int(x), etc)
• Use other frameworks (numpy/xarray/etc) for part of their model
• Data dependent Python control flow or other dynamism
• Exceptions, closures, generators, classes, etc

All of these violate the assumptions of most graph mode backends.



PyTorch Usability/Performance Tradeoff
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cmodel = torch.compile(model)

INTRODUCING



TorchDynamo:
Out-of-the-box graph capture for PyTorch



torch.compile() with a 
user-defined backend

my_compiler() called with FX graph:
opcode         name     target            args            
-------------  -------  ----------------  ----------------
placeholder    a        a                 ()              
placeholder    b        b                 ()              
call_function  abs_1    torch.abs         (a,)            
call_function  add      operator.add      (abs_1, 1)      
call_function  truediv  operator.truediv  (a, add)        
call_method    sum_1    sum               (b,)            
call_function  lt       operator.lt       (sum_1, 0)      
output         output   output            ((truediv, lt),)

my_compiler() called with FX graph:
opcode         name     target            args       
-------------  ------   ----------------  -----------
placeholder    b        b                 ()         
placeholder    x        x                 ()         
call_function  mul      operator.mul      (b, -1)    
call_function  mul_1    operator.mul      (x, mul)   
output         output   output            ((mul_1,),)

my_compiler() called with FX graph:
opcode         name     target            args     
-------------  ------   ----------------  ---------
placeholder    b        b                 ()       
placeholder    x        x                 ()       
call_function  mul      operator.mul      (x, b)   
output         output   output            ((mul,),)

Output:





TorchInductor: 
A PyTorch Native Compiler



TORCHINDUCTOR PRINCIPLES

PyTorch Native

Similar abstractions to 
PyTorch eager to allow 
support for nearly all of 
PyTorch, with a thin 
translation layer.

Python First

A pure python compiler 
makes TorchInductor 
easy to understand and 
hackable by users.  
Generates Triton and 
C++.

Breadth First

Early focus on supporting a 
wide variety of operators, 
hardware, and 
optimization.  A general 
purpose compiler, that can 
scale.



TORCHINDUCTOR TECHNOLOGIES

Define-By-Run 
Loop-Level IR

Direct use of Python 
functions in IR 
definitions allows for 
rapidly defining lowering 
with little boilerplate.

Dynamic Shapes & 
Strides

Uses SymPy to reason 
about shapes, indexing, 
and managing guards.  
Symbolic shapes from 
the ground up.

Reuse State-Of-The-Art 
Languages

Generates output code in 
languages popular for 
writing handwritten 
kernels:
● Triton for GPUs
● C++/OpenMP for CPUs



What is Triton?
A new programming language for highly performant GPU kernels

● Higher level than CUDA
● Lower level than preexisting DSLs
● Allows non-experts to write fast custom kernels

Users define tensors (i.e., blocks of data) in SRAM, and modify 
them using torch-like operators

https://triton-lang.org
https://github.com/openai/triton
by Philippe Tillet @ OpenAI

Triton: an intermediate language and compiler for tiled neural 
network computations

Philippe Tillet, H. T. Kung, David Cox 

In Proceedings of the 3rd ACM SIGPLAN International 
Workshop on Machine Learning and Programming Languages 
(MAPL 2019)

https://doi.org/10.1145/3315508.3329973



TorchInductor Overview
AotAutograd

Decomposes into 
smaller operator set

Capture forwards + 
backwards

Some inductor specific 
decomps included in this 
step

Inductor Graph Lowerings

Remove views, broadcasting, 
and simplify indexing

Rematerialize vs reuse 
decisions

Layout tuning and optimization

Loop order

Inductor Scheduling

Horizontal / vertical fusion 
decisions

Reduction fusions

Tiling

Memory planning and buffer 
reuse

In-place memory buffers

Autotuning / kernel selection

Wrapper Codegen

Outer code that calls 
kernels and allocates 
memory

(Replaces interpreter)

Backend Codegen

Triton

C++

Halide (new)



TorchInductor Example

Run with:
TORCH_COMPILE_DEBUG=1 python inductor_demo.py

Input Code ATen FX Graph Define-by-run IR Scheduling/Fusion Output Triton Output Wrapper



TorchInductor Example

Input Code ATen FX Graph Define-by-run IR Scheduling/Fusion Output Triton Output Wrapper



TorchInductor Example

Input Code ATen FX Graph Define-by-run IR Scheduling/Fusion Output Triton Output Wrapper



torch/_inductor/scheduler.py

Scheduler.can_fuse(buf0, buf1)
    True

Scheduler.score_fusion(buf0, buf1)
   (True, True, 33554432, -1)

● True/True is category of fusion (pointwise+pointwise)
● 33554432 is estimated memory bandwidth saved by 

fusion:  8192*1024*4
● -1 is distance in input graph

TorchInductor Example

Input Code ATen FX Graph Define-by-run IR Scheduling/Fusion Output Triton Output Wrapper



TorchInductor Example

Input Code ATen FX Graph Define-by-run IR Scheduling/Fusion Output Triton Output Wrapper



TorchInductor Example

Input Code ATen FX Graph Define-by-run IR Scheduling/Fusion Output Triton Output Wrapper



TorchInductor Example:  C++ Output
Change device=’cuda’ to device=’cpu’



NVIDIA A100 PERFORMANCE

Geomean speedup over PyTorch eager using float16
Higher is better



NVIDIA A100 PERFORMANCE

Cumulative distribution function of speedups over PyTorch eager.



NVIDIA A100 PERFORMANCE

Geomean speedup over PyTorch eager on 45 models from HuggingFace using fp16



Live PyTorch 2.0 Q&A Series:

https://www.youtube.com/@PyTorch

PyTorch Dev Podcast (by ezyang)

https://pytorch-dev-podcast.simplecast.com/

Code: 

https://github.com/pytorch/pytorch/tree/master/torch/_dynamo

https://github.com/pytorch/pytorch/tree/master/torch/_functorch/a

ot_autograd.py

https://github.com/pytorch/pytorch/tree/master/torch/_inductor

We are hiring!

Reach out to pengwu@meta.com


