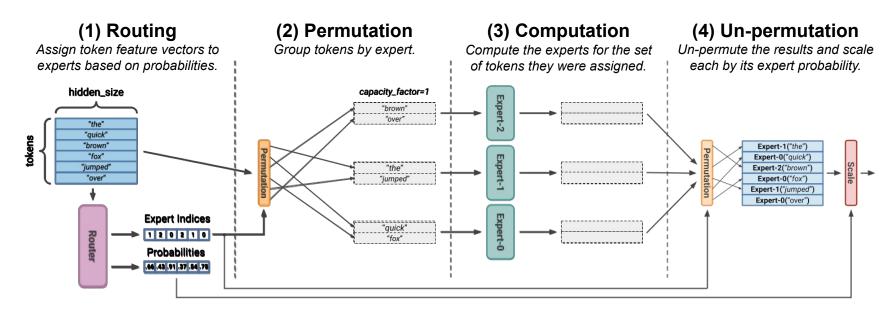
MegaBlocks: Efficient Sparse Training with Mixture-of-Experts

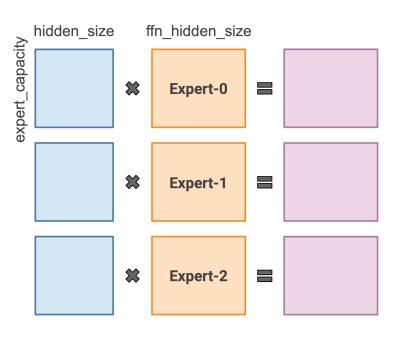
Trevor Gale*†, Deepak Narayanan[‡], Cliff Young[†], Matei Zaharia*
*Stanford University, †Google DeepMind, †Microsoft Research
UMD, March 2025

Mixture-of-Experts Layers



As expert count increases, individual expert computation gets smaller. **Computing the experts in parallel is key to good performance!**

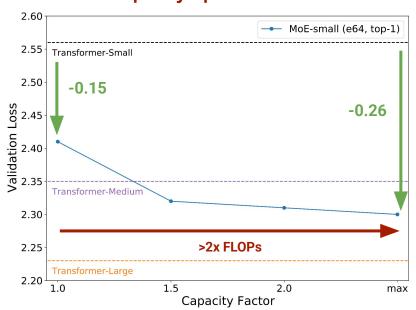
Batched Expert Computation



Batched Matrix Multiplication

Experts must have same number of tokens! Set via capacity_factor hyperparameter.

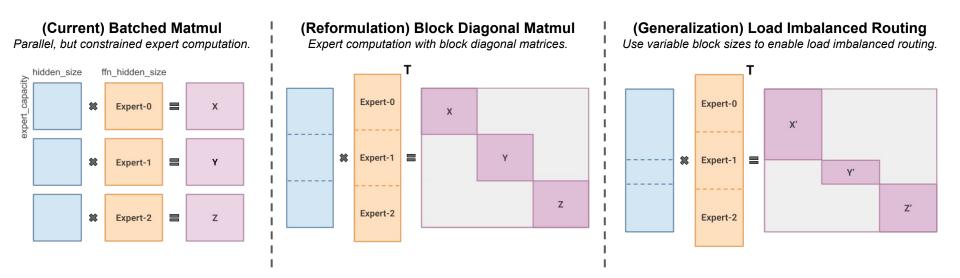
Bad: Introduces quality-speed tradeoff.



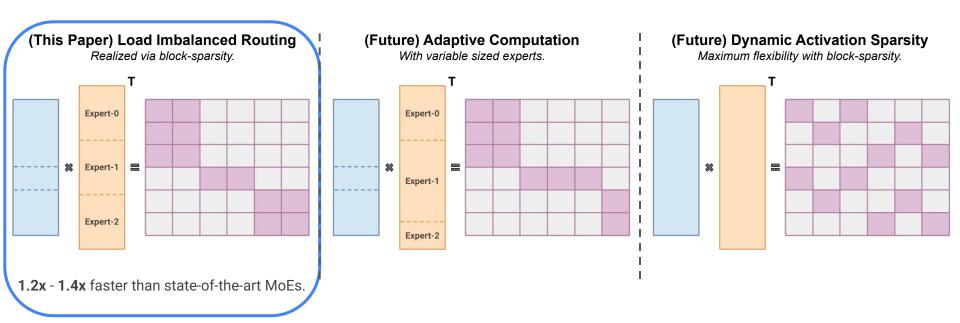
Token Dropping

Tokens will be skipped if too many are assigned to an expert.

MegaBlocks: Mixture-of-Experts with Structured Sparsity



MegaBlocks: Mixture-of-Experts as Structured Sparsity

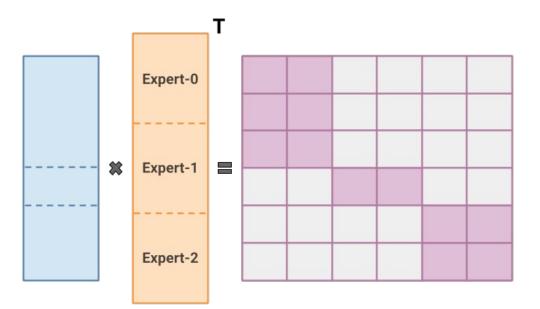


This is the first step towards our goal to improve quality / flop by generalizing MoEs.

Roadmap

O. Introduction

- 1. MoEs with Block Sparsity
- 2. Block-Sparse Kernels for MoEs
- 3. End-to-End Results with dMoEs



MoEs With Block Sparsity

Dropless-MoEs With Block-Sparsity

Dropless-MoE (dMoE) Computation:

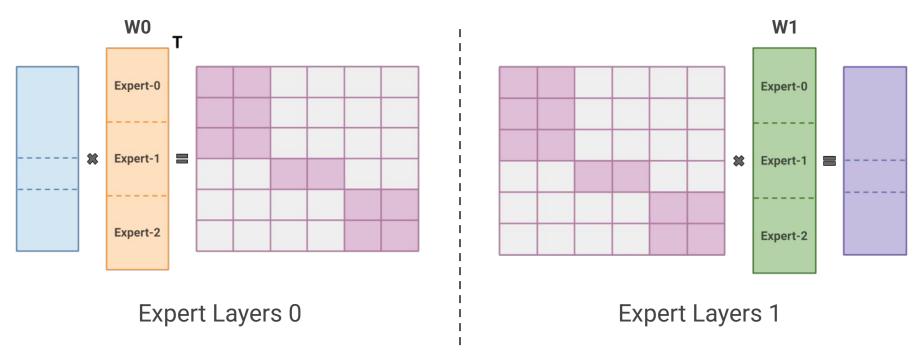
- 1 : Assign tokens to experts.
- 2 : Construct the sparse matrix from router outputs.
- 3 : Group the tokens by expert assignment.
- 4: Use block-sparse products to compute expert layers.
- 5: Un-permute and scale by router weights.

Pseudocode for dMoE

```
1 def dmoe forward(x):
2  indices, weights = router(x)
3
2  4  topology = make_topology(indices)
5  
3  6  x = padded_gather(x, indices)
7  
4  8  x = sdd(x, w1, topology)
9  x = dsd(x, w2)
10
11  x = padded_scatter(x, indices)
12
13  return x * weights
```

(Changes for dMoE highlighted in blue)

Multi-Layer Expert Computation



The sparse matrix topology is determined by the router and re-used across the layers of the experts.

Block-Sparse Kernels for MoEs

Block-Sparse Kernels for MoEs

	For high throughput.	Fwd + bwd passes.	No token dropping.	Changes every use.
Library	Large Blocks	Transposition	Load Imbalance	Fast Construction
cuSPARSE		X	X	X
Triton Blocksparse				X

cuSPARSE not an option: no transposes + ELLPACK format.

Blocksparse does expensive preprocessing: **5-10x** slower than dense if not amortized.

Our Solution: Hybrid Block-Sparse Format

Many "views" of the sparse matrix:

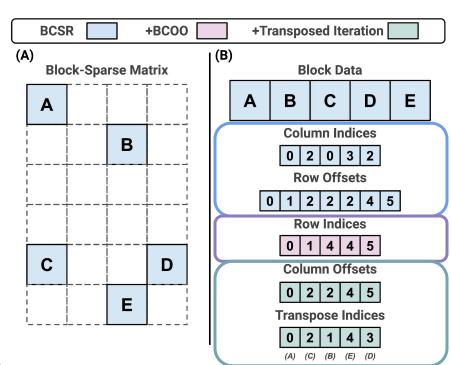
Blocked-CSR: sparse inputs

Blocked-COO: sparse outputs

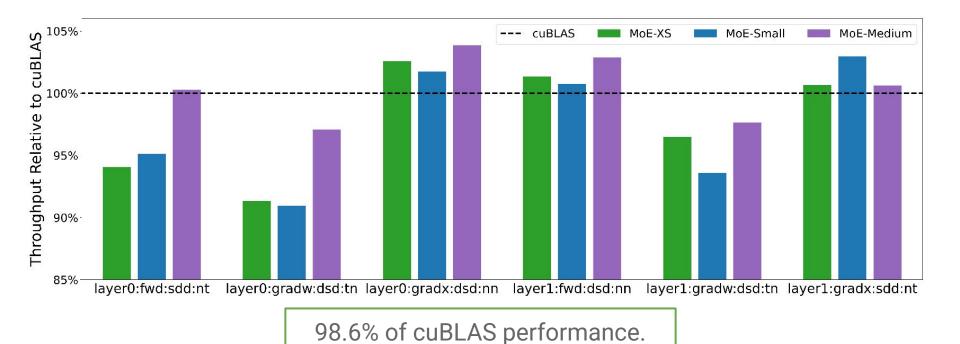
Transpose Index: transposed sparse inputs

Metadata is cheap to compute and store:

<0.1% storage overhead for 128x128 blocks



MegaBlocks Block-Sparse Kernels



End-to-End Results

Evaluation Details

MegaBlocks is built on Megatron-LM + PyTorch. ()

Models:

Transformers-MoEs with 64-experts and top-1 routing.

Baselines:

MoE: Tutel (+ Megatron-LM)

Dense: Megatron-LM

Training:

10B tokens from The Pile on 8x A100 GPUs. Data parallelism for Transformers, 8-way expert model parallelism for MoE layers.

capacity_factor={1, 1.5, 2.0} for MoE baselines.

Transformer	hidden_size	num_layers	Weights (M)	GFLOPs
XS	512	6	46	316
Small	768	12	125	879
Medium	1024	24	356	2487
Large	1536	24	760	5122
XL	2048	24	1316	8684

Table 1: Baseline Transformer Models.

MoE	num_experts	top_k	Weights (M)	GFLOPs
XS	64	1	839	316
Small	64	1	3,693	879
Medium	64	1	13,041	2487

Table 2: Transformer-MoE Models.

Training Transformer Language Models

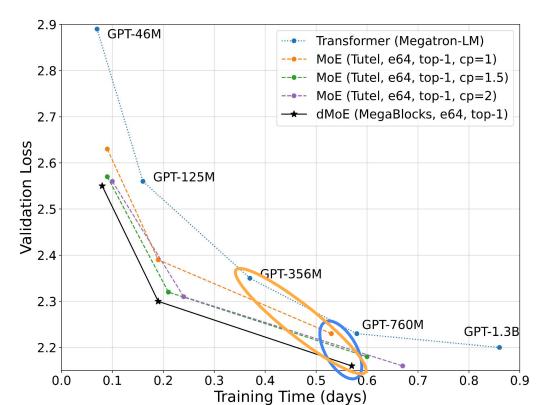
Compared to best performing configuration with the same quality:

1.2x - 1.4x faster than Tutel MoEs.

1.8x - **2.4x** faster than Megatron-LM Transformers.

MegaBlocks cp=1 speed and cp=inf quality.

- Some slowdown with smaller batch sizes from padding to 128.
- Some slowdown from using smaller batch than dense (memory usage).



Impact & Adoption

Models Using MegaBlocks

Collaborated with Databricks to train **DBRX** with MegaBlocks.

March 2024: MegaBlocks becomes an official Databricks project => github.com/databricks/megablocks.

<u>Mixtral 8x7B</u> released with MegaBlocks reference implementation.

<u>JetMoE</u> trained with MegaBlocks.

Libraries Using MegaBlocks

github.com/microsoft/tutel

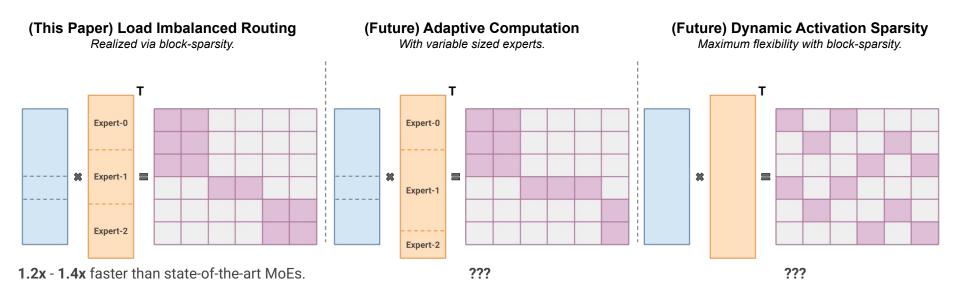
github.com/huggingface/nanotron

github.com/EleutherAl/gpt-neox

MegaBlocks on TPU (!)

github.com/google/jax => ops, written in Pallas
github.com/google/maxtext => dMoE in JAX on TPU
github.com/pytorch/xla => dMoE in PyTorch on TPU

Questions?



github.com/stanford-futuredata/megablocks

