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Motivation: LLM Pre-Training is Expensive
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Model Number of GPUs Duration

GPT-3 (175B) 10,000 34 days

GPT-4 25,000 Several months

PaLM (540B) 6,144 2 months

Turing NLG 560 Several months

Bloom (176B) 384 3 months

Chinchilla (70B) 4,096 1 month

T5 (11B) 1,024 1 month

LLM pre-training: How much does it cost?
Model 

Size (B)
Tokens 

(Trillion)
Aurora 

Time (h)
Polaris 

Time (h)
Aurora 

Time (Days)
Polaris 

Time (Days)
Cloud Cost 
($3 GPU/hr)

7 2 2.29 333 0.10 14 $437K

7 3 3.34 500 0.14 21 $656K

70 2 22.88 3,333 0.95 139 $4,374K

70 3 34.31 5,000 1.43 208 $6,561K

200 6 196.08 28,571 8.17 1,190 $37,496K

200 10 326.80 47,619 13.62 1,984 $62,494K

1000 10 1633.99 238,095 68.08 9,921 $312,470K

1000 20 3267.97 476,190 136.17 19,841 $624,941K

LLM Pretraining is Resource-intensive 
& Time-consuming
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Datacenter Traces Reveal Urgent need for Efficient Resilience
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Fig: Failures on Alibaba Cloud consisting of 256 
NVIDIA H800 GPUs running LLM training*

*Unicron: Economizing Self-Healing LLM Training at Scale; He, Tao, et. al. 2023, https://arxiv.org/pdf/2401.00134
^Characterization of Large Language Model Development in the Datacenter, Hu, Qinghao, et. al., 2024, https://arxiv.org/pdf/2403.07648v2

Fig: Failures on Shanghai AI Laboratory’s LLM Clusters: Seren and 
Kalos, housing a total of  4704 A100 GPUs in total^
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Productive and Administrative

● Understanding Model Evolution
● Forensics, Biases & Ethics: periodic 

evaluation in the background 
● Suspend-resume (e.g. every 6 hours)
● Elastic training: Vary number of GPUs

Checkpointing as a Fundamental Primitive for LLMs
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Failures 

● NCCL timeout
● NVLink error
● Invalid DMA mapping
● Task hung up
● Link flapping
Impacts one or more processes

Undesirable training trajectories

● Google PaLM reported model spikes at 
arbitrary training points

● Restart from checkpoints taken 100s of 
timesteps ago

● Costly fine-grained checkpointing due to 
lack of efficient checkpoint engine

Scenarios:
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3D Parallelism: How to Scale LLM Pre-Training (1)
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● Input data is split across data-parallel instances to improve training throughput
● Gradients are averaged using all-reduce to keep the replicas in sync and learn the same pattern 
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3D Parallelism: How to Scale LLM Pre-Training (2)
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● Tensor parallelism splits individual layers horizontally across multiple GPUs
● Pipeline parallelism groups multiple layer together into successive stages
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Checkpointing under 3D Parallelism: Use Heterogeneous Storage
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● PCIe Interconnects (25GB/s+) are used to capture checkpoints to host memory  
● From there, multi-level storage hierarchy: node-local NVMe, remote storage (PFS) 
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What Do We Need to Checkpoint?
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● Produces a single checkpoint file 
● What do we need to checkpoint: Metadata (e.g. PRNG 

state), model parameters, optimizer state 
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Data Parallelism: Parallel Checkpointing
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● Each data-parallel replica owns a complete copy of the model
● Checkpointing in parallel exploits the I/O bandwidth of all GPUs/nodes
● Examples: DeepFreeze, TorchSnapshot, etc.
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Model and Optimizer State Fine-Grain Sharding (1)
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● Each model layer and optimizer shard produces a different checkpoint file for each GPU (e.g. DeepSpeed)
● Helpful for elastic/universal checkpoint-restart (use different data, tensor, pipeline-parallelism on restart)
● All shards need to be consistently captured for a successful checkpoint
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Model and Optimizer State Fine-Grain Sharding (2)
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● Independent files per shard enables highly parallel I/O, but too many 
files may introduce I/O bottlenecks on shared storage (PFS)

Goal: High-Performance, Scalable Checkpointing that Masks I/O Overheads 
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Synchronous and Asynchronous Data Movement Techniques
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Synchronous Data Movement
✔ Easy to design and debug
✔ Avoids CPU oversubscription
✖ Underutilized computational 

resources, memory tiers and 
interconnects

Partially Asynchronous Data Movement
✔ Easy extension of existing engines
✔ Mitigates slow I/O bottlenecks beyond 

the host tier
✖ Underutilization of spare GPU memory 

and GPU-host interconnect



Observations Driving Our Design
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● Checkpoint size increases linearly with the 
number of model parameters

● Checkpoint shard per GPU is load balanced and 
remains the similar for different model sizes

● Forward and backward pass consume majority of 
the iteration duration (>95%) during training

● Model and optimizer states are immutable during 
forward and backward passes

HPDC’24



DataStates-LLM: Key Ideas and Design Principles
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● Leverage Immutability: Lazy Non-Blocking Copies Overlapping with Forward and Backward Pass
○ Model and optimizer states do not change during forward and backward passes

○ Keep copying until the start of update phase; block updates if previous copies are pending

● Coalescing of GPU Model/Optimizer Shards to Host Memory
○ Prepare the host memory for efficient GPU-host data transfers (pre-pinning)

○ Optimize host memory layout for bulk transfer of shards from multiple GPUs

● Streamlined Multi-level Flushing to Persistent Storage
○ Start streaming to disk as soon as partial checkpointing data is copied from GPU to host memory

○ Parallel use of two physical links: GPU-to-host and host-to-disk

● Asynchronous Distributed Consolidation of Model and Optimizer Shards
○ Asynchronous multi-level flushing necessitate consensus to commit a valid and consistent checkpoint version
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Synchronous and Asynchronous Data Movement Techniques
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Synchronous Data Movement
✔ Easy to design and debug
✔ Avoids CPU oversubscription
✖ Underutilized computational 

resources, memory tiers and 
interconnects

Partially Asynchronous Data Movement
✔ Easy extension of existing engines
✔ Mitigates slow I/O bottlenecks beyond 

the host tier
✖ Underutilization of spare GPU memory 

and GPU-host interconnect

Asynchronous Data Movement
✔ Mitigates slow I/O bottlenecks and 

memory utilization for all tiers
✖ Complex overlap centric design makes 

it challenging to design & debug



Comparison with State of Art Checkpointing Approaches
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Comparison with State of Art Checkpointing Approaches
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Comparison with State of Art Checkpointing Approaches
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Comparison with State of Art Checkpointing Approaches
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Implementation and Integration with DeepSpeed
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● Module extension to DeepSpeed, state-of-art LLM 

training runtime

● Written in C++/CUDA and exposed through Python 

and C++ APIs

○ Eliminates inefficiencies arising from Python Global 
Interpreter Lock (GIL)

○ Uses dedicated CUDA-streams overlapping D2H and H2D 
transfers using hardware copy engines

○ Leverages PyBind11

● Openly available and extensible to other accelerators 

and runtimes (e.g., Pytorch Lightning)
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Experimental Evaluation

21

● Model and runtime configuration
○ 5 models from real-world setups: 3B, 7B, 13B, 30B, 70B
○ Tensor-parallelism: 4 (max GPUs per node), pipeline parallelism: number of nodes, ZeRO stage-1

● Compared approaches
○ DeepSpeed, Asynchronous checkpointing, TorchSnapshot, DataStates-LLM (Ours)

● Performance metrics
○ Checkpointing throughput Measures checkpoint_size/total_blocking_time
○ Iteration slowdown Measures impact of I/O overheads incurred by checkpointing
○ End-to-end training time Measures impact of slow asynchronous flushes to disk

● Experimental Setup: ALCF Polaris testbed
○ Every node: 4xA100 40GB GPUs and 512 GB host memory
○ We use up to 512 GPUs
○ Each GPU mapped to a different NUMA domain with 

PCIe Gen 4 device-host throughput: 25 GB/s
○ Luster file system for persistence with 160 OST and 

40 metadata servers with aggregated bandwidth of 650 GB/s
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Checkpointing Performance for Different Model Sizes
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● DataStates-LLM achieves 4x – 34x faster 
checkpointing throughput compared to state-of-art

● Checkpointing throughput increases for larger 
models because all GPUs flush in parallel

● DataStates-LLM achieves 1.3x – 4.8x faster 
iterations compared to state-of-art

● DataStates-LLM shows negligible overheads on 
the training iteration when checkpointing

HPDC’24
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Increasing Data-Parallelism: Strong Scalability of Checkpoint Performance
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● All approaches scale well to increasing data parallel replicas due to more parallel channels for flushes

● Our approach achieves 1.75x – 48x faster checkpointing compared to state-of-art 

13B model 30B model

10.4 GB

650 MB 870 MB

13.8 GB



End-to-end Runtime for Increasing Checkpointing Frequency
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Our overlap centric design achieves 3x – 4.2x faster end-to-end training compared to state-of-art 
checkpointing engines, irrespective of the I/O pressure due to increasing checkpointing frequency

7B model 13B model



● Large-scale distributed LLM training running with advanced hybrid parallelism strategies are 
prone to failures and undesirable trajectories, necessitating checkpointing

● State-of-the-art checkpointing engines are inefficient because
○ They do not exploit immutable training phases to overlap checkpoint I/O
○ They underutilize available interconnect and memory resources

● DataStates-LLM efficiently and transparently captures globally consistent checkpoints
○ Uses preallocated pinned buffers for fast DMA
○ Coalescing of model/optimizer shards
○ Lazy non-blocking checkpoint snapshotting overlapping with immutable phases
○ Streaming multi-level flushing to persistent storage
○ Asynchronous distributed consensus of checkpoint 

● DataStates-LLM achieves 4x – 48x faster checkpointing and 
1.3x – 4.8x faster iterations compared to state-of-the-art approaches

Key takeaways: Asynchronous Checkpointing for LLMs
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Our Current and Future Research Directions
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Pre-training
● Optimized hybrid GPU-CPU computations with optimizer offloading (Middleware’24)

○ Accelerate updates by 2.5x using overlapping I/O and combined computations of CPU and GPU

● Accelerated training for memory-constrained scenarios requiring disk-offloaded optimizers 
○ Leveraging idle remote storage bandwidth for 3x faster backward and update phases

● Utilizing low rank linear layer representations for accelerated and memory efficient pre-training (ArXiv’25)

Inferencing
● Characterizing KV cache access patterns under concurrency (IPDPS’25)

○ Report key findings for optimizing KV cache movement and request scheduling

● Unified, dynamic, asynchronous model and KV cache offloading

More…
● EAIRA: A Methodology for Evaluating AI Models as Scientific Research Assistants (IJHPC’25)

● DataStates-LLM Elastic Checkpoint, Evaluations, and Recovery

https://arxiv.org/abs/2410.21316
https://arxiv.org/pdf/2502.10940
https://inria.hal.science/hal-04984000v1/preview/KV_Cache_Characterization_IPDPS25.pdf
https://arxiv.org/abs/2502.20309

