
DataStates-LLM: Lazy Asynchronous 
Checkpointing for Large Language Models

Avinash Maurya
Postdoctoral Researcher 
Mathematics and Computer Science Division, Argonne National Laboratory

University of Maryland, SysML Seminar, 22nd April 2025

HPDC’24. Authors: Avinash Maurya, Robert Underwood, M. Mustafa Rafique, Franck Cappello, Bogdan Nicolae



Motivation: LLM Pre-Training is Expensive

2

Model Number of GPUs Duration

GPT-3 (175B) 10,000 34 days

GPT-4 25,000 Several months

PaLM (540B) 6,144 2 months

Turing NLG 560 Several months

Bloom (176B) 384 3 months

Chinchilla (70B) 4,096 1 month

T5 (11B) 1,024 1 month

LLM pre-training: How much does it cost?
Model 

Size (B)
Tokens 

(Trillion)
Aurora 

Time (h)
Polaris 

Time (h)
Aurora 

Time (Days)
Polaris 

Time (Days)
Cloud Cost 
($3 GPU/hr)

7 2 2.29 333 0.10 14 $437K

7 3 3.34 500 0.14 21 $656K

70 2 22.88 3,333 0.95 139 $4,374K

70 3 34.31 5,000 1.43 208 $6,561K

200 6 196.08 28,571 8.17 1,190 $37,496K

200 10 326.80 47,619 13.62 1,984 $62,494K

1000 10 1633.99 238,095 68.08 9,921 $312,470K

1000 20 3267.97 476,190 136.17 19,841 $624,941K

LLM Pretraining is Resource-intensive 
& Time-consuming

HPDC’24



Datacenter Traces Reveal Urgent need for Efficient Resilience

3

Fig: Failures on Alibaba Cloud consisting of 256 
NVIDIA H800 GPUs running LLM training*

*Unicron: Economizing Self-Healing LLM Training at Scale; He, Tao, et. al. 2023, https://arxiv.org/pdf/2401.00134
^Characterization of Large Language Model Development in the Datacenter, Hu, Qinghao, et. al., 2024, https://arxiv.org/pdf/2403.07648v2

Fig: Failures on Shanghai AI Laboratory’s LLM Clusters: Seren and 
Kalos, housing a total of  4704 A100 GPUs in total^

HPDC’24



Productive and Administrative

● Understanding Model Evolution
● Forensics, Biases & Ethics: periodic 

evaluation in the background 
● Suspend-resume (e.g. every 6 hours)
● Elastic training: Vary number of GPUs

Checkpointing as a Fundamental Primitive for LLMs

4

Failures 

● NCCL timeout
● NVLink error
● Invalid DMA mapping
● Task hung up
● Link flapping
Impacts one or more processes

Undesirable training trajectories

● Google PaLM reported model spikes at 
arbitrary training points

● Restart from checkpoints taken 100s of 
timesteps ago

● Costly fine-grained checkpointing due to 
lack of efficient checkpoint engine

Scenarios:

HPDC’24



3D Parallelism: How to Scale LLM Pre-Training (1)

5

● Input data is split across data-parallel instances to improve training throughput
● Gradients are averaged using all-reduce to keep the replicas in sync and learn the same pattern 

HPDC’24



3D Parallelism: How to Scale LLM Pre-Training (2)

6

● Tensor parallelism splits individual layers horizontally across multiple GPUs
● Pipeline parallelism groups multiple layer together into successive stages

HPDC’24



Checkpointing under 3D Parallelism: Use Heterogeneous Storage

7

● PCIe Interconnects (25GB/s+) are used to capture checkpoints to host memory  
● From there, multi-level storage hierarchy: node-local NVMe, remote storage (PFS) 

HPDC’24



What Do We Need to Checkpoint?

8

● Produces a single checkpoint file 
● What do we need to checkpoint: Metadata (e.g. PRNG 

state), model parameters, optimizer state 

HPDC’24



Data Parallelism: Parallel Checkpointing

9

● Each data-parallel replica owns a complete copy of the model
● Checkpointing in parallel exploits the I/O bandwidth of all GPUs/nodes
● Examples: DeepFreeze, TorchSnapshot, etc.

HPDC’24



Model and Optimizer State Fine-Grain Sharding (1)

10

● Each model layer and optimizer shard produces a different checkpoint file for each GPU (e.g. DeepSpeed)
● Helpful for elastic/universal checkpoint-restart (use different data, tensor, pipeline-parallelism on restart)
● All shards need to be consistently captured for a successful checkpoint

HPDC’24



Model and Optimizer State Fine-Grain Sharding (2)

11

● Independent files per shard enables highly parallel I/O, but too many 
files may introduce I/O bottlenecks on shared storage (PFS)

Goal: High-Performance, Scalable Checkpointing that Masks I/O Overheads 

HPDC’24



Synchronous and Asynchronous Data Movement Techniques

12

Synchronous Data Movement
✔ Easy to design and debug
✔ Avoids CPU oversubscription
✖ Underutilized computational 

resources, memory tiers and 
interconnects

Partially Asynchronous Data Movement
✔ Easy extension of existing engines
✔ Mitigates slow I/O bottlenecks beyond 

the host tier
✖ Underutilization of spare GPU memory 

and GPU-host interconnect



Observations Driving Our Design

13

● Checkpoint size increases linearly with the 
number of model parameters

● Checkpoint shard per GPU is load balanced and 
remains the similar for different model sizes

● Forward and backward pass consume majority of 
the iteration duration (>95%) during training

● Model and optimizer states are immutable during 
forward and backward passes

HPDC’24



DataStates-LLM: Key Ideas and Design Principles

14

● Leverage Immutability: Lazy Non-Blocking Copies Overlapping with Forward and Backward Pass
○ Model and optimizer states do not change during forward and backward passes

○ Keep copying until the start of update phase; block updates if previous copies are pending

● Coalescing of GPU Model/Optimizer Shards to Host Memory
○ Prepare the host memory for efficient GPU-host data transfers (pre-pinning)

○ Optimize host memory layout for bulk transfer of shards from multiple GPUs

● Streamlined Multi-level Flushing to Persistent Storage
○ Start streaming to disk as soon as partial checkpointing data is copied from GPU to host memory

○ Parallel use of two physical links: GPU-to-host and host-to-disk

● Asynchronous Distributed Consolidation of Model and Optimizer Shards
○ Asynchronous multi-level flushing necessitate consensus to commit a valid and consistent checkpoint version

HPDC’24



Synchronous and Asynchronous Data Movement Techniques

15

Synchronous Data Movement
✔ Easy to design and debug
✔ Avoids CPU oversubscription
✖ Underutilized computational 

resources, memory tiers and 
interconnects

Partially Asynchronous Data Movement
✔ Easy extension of existing engines
✔ Mitigates slow I/O bottlenecks beyond 

the host tier
✖ Underutilization of spare GPU memory 

and GPU-host interconnect

Asynchronous Data Movement
✔ Mitigates slow I/O bottlenecks and 

memory utilization for all tiers
✖ Complex overlap centric design makes 

it challenging to design & debug



Comparison with State of Art Checkpointing Approaches

16

HPDC’24



Comparison with State of Art Checkpointing Approaches

17

HPDC’24



Comparison with State of Art Checkpointing Approaches

18

HPDC’24



Comparison with State of Art Checkpointing Approaches

19

HPDC’24



Implementation and Integration with DeepSpeed

20

● Module extension to DeepSpeed, state-of-art LLM 

training runtime

● Written in C++/CUDA and exposed through Python 

and C++ APIs

○ Eliminates inefficiencies arising from Python Global 
Interpreter Lock (GIL)

○ Uses dedicated CUDA-streams overlapping D2H and H2D 
transfers using hardware copy engines

○ Leverages PyBind11

● Openly available and extensible to other accelerators 

and runtimes (e.g., Pytorch Lightning)

HPDC’24



Experimental Evaluation

21

● Model and runtime configuration
○ 5 models from real-world setups: 3B, 7B, 13B, 30B, 70B
○ Tensor-parallelism: 4 (max GPUs per node), pipeline parallelism: number of nodes, ZeRO stage-1

● Compared approaches
○ DeepSpeed, Asynchronous checkpointing, TorchSnapshot, DataStates-LLM (Ours)

● Performance metrics
○ Checkpointing throughput Measures checkpoint_size/total_blocking_time
○ Iteration slowdown Measures impact of I/O overheads incurred by checkpointing
○ End-to-end training time Measures impact of slow asynchronous flushes to disk

● Experimental Setup: ALCF Polaris testbed
○ Every node: 4xA100 40GB GPUs and 512 GB host memory
○ We use up to 512 GPUs
○ Each GPU mapped to a different NUMA domain with 

PCIe Gen 4 device-host throughput: 25 GB/s
○ Luster file system for persistence with 160 OST and 

40 metadata servers with aggregated bandwidth of 650 GB/s

HPDC’24



Checkpointing Performance for Different Model Sizes

22

● DataStates-LLM achieves 4x – 34x faster 
checkpointing throughput compared to state-of-art

● Checkpointing throughput increases for larger 
models because all GPUs flush in parallel

● DataStates-LLM achieves 1.3x – 4.8x faster 
iterations compared to state-of-art

● DataStates-LLM shows negligible overheads on 
the training iteration when checkpointing

HPDC’24

34x

4.8x



Increasing Data-Parallelism: Strong Scalability of Checkpoint Performance

23

● All approaches scale well to increasing data parallel replicas due to more parallel channels for flushes

● Our approach achieves 1.75x – 48x faster checkpointing compared to state-of-art 

13B model 30B model

10.4 GB

650 MB 870 MB

13.8 GB



End-to-end Runtime for Increasing Checkpointing Frequency

24

Our overlap centric design achieves 3x – 4.2x faster end-to-end training compared to state-of-art 
checkpointing engines, irrespective of the I/O pressure due to increasing checkpointing frequency

7B model 13B model



● Large-scale distributed LLM training running with advanced hybrid parallelism strategies are 
prone to failures and undesirable trajectories, necessitating checkpointing

● State-of-the-art checkpointing engines are inefficient because
○ They do not exploit immutable training phases to overlap checkpoint I/O
○ They underutilize available interconnect and memory resources

● DataStates-LLM efficiently and transparently captures globally consistent checkpoints
○ Uses preallocated pinned buffers for fast DMA
○ Coalescing of model/optimizer shards
○ Lazy non-blocking checkpoint snapshotting overlapping with immutable phases
○ Streaming multi-level flushing to persistent storage
○ Asynchronous distributed consensus of checkpoint 

● DataStates-LLM achieves 4x – 48x faster checkpointing and 
1.3x – 4.8x faster iterations compared to state-of-the-art approaches

Key takeaways: Asynchronous Checkpointing for LLMs

25

HPDC’24



Our Current and Future Research Directions

26

Pre-training
● Optimized hybrid GPU-CPU computations with optimizer offloading (Middleware’24)

○ Accelerate updates by 2.5x using overlapping I/O and combined computations of CPU and GPU

● Accelerated training for memory-constrained scenarios requiring disk-offloaded optimizers 
○ Leveraging idle remote storage bandwidth for 3x faster backward and update phases

● Utilizing low rank linear layer representations for accelerated and memory efficient pre-training (ArXiv’25)

Inferencing
● Characterizing KV cache access patterns under concurrency (IPDPS’25)

○ Report key findings for optimizing KV cache movement and request scheduling

● Unified, dynamic, asynchronous model and KV cache offloading

More…
● EAIRA: A Methodology for Evaluating AI Models as Scientific Research Assistants (IJHPC’25)

● DataStates-LLM Elastic Checkpoint, Evaluations, and Recovery

https://arxiv.org/abs/2410.21316
https://arxiv.org/pdf/2502.10940
https://inria.hal.science/hal-04984000v1/preview/KV_Cache_Characterization_IPDPS25.pdf
https://arxiv.org/abs/2502.20309

