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Why Should We Care About Optimizers?

§ Training algorithm improvements lead to:
§ Faster convergence to the same model quality, or

§ Higher quality models (in single epoch training) with the same

amount of data / iterations.

§ Unlike model scaling, only changes training costs, with fixed
inference and serving costs.

§ Unlike previous element-wise optimizers (SGD, Adam, AdaGrad),
Shampoo requires:

§ Higher memory utilization and more compute during training.

§ More complex operators (root inverse computation).

§ Is tensor-shape dependent.

§ Shampoo-like algorithms are being used at major companies,
including Google and Meta!

§ Already new developments such as eigenvalue-corrected Shampoo /
SOAP, Muon, etc.



Recalling AdaGrad

Let ω ! 0. Initialize v0 “ 0. Then:

vk “ vk´1 ` g2k

wk`1 “ wk ´ εk
gk?
vk ` ω

Due to only leveraging element-wise operators, we implement AdaGrad
by constructing optimizer states for each parameter with the same shape,
and apply a series of element-wise operations, i.e.,
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This gives us a more general mathematical formulation that is more
commonly used for understanding optimization algorithms.
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Adaptive Gradient Methods [Duchi, et al., 2011]

If gk is the (mini-batch) stochastic gradient, we can write AdaGrad as:

wk`1 “ wk ´ εkA
´1{2
k gk

where εk ! 0 is the learning rate/steplength and

Ak “
#"k

t“1 diagpg2t q if diagonal Adagrad,
"k

t“1 gtg
T
t if full-matrix Adagrad.

§ Diagonal approximations do not capture any pairwise correlations!

§ Diagonal AdaGrad is cheap: Opdq memory, Opdq FLOPs/step.

§ Full-matrix AdaGrad is expensive: Opd2q memory, Opd3q FLOPs/step.

§ Note that A1{2 refers to the matrix square-root (A1{2
A

1{2 “ A), which is not
equivalent to element-wise square-root Bij “ a

Aij , B d B “ A.

https://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf
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Shampoo (for Matrices)

Let us focus on a single fully-connected layer (without bias) for now, with
parameters and gradients W,G P Rmˆn.

Initialize: L0 “ 0 P Rmˆm, R0 “ 0 P Rnˆn.
Then for each step k:

Lk “ Lk´1 ` GkG
T
k

Rk “ Rk´1 ` GT
kGk

Wk`1 “ Wk ´ εkL
´1{4
k GkR

´1{4
k

Lk, Rk are symmetric positive semi-definite!

This can be generalized to tensors of arbitrary order.

Equivalence to Row-Wise Adagrad Relationship to AdaFactor Shampoo for ω-Order Tensors



Matrix Root Inverse Computation

How to compute A "Ñ A´1{4 (or A´1{p for p P Z) for A symmetric
positive semi-definite?

Main Approaches:

1. Direct Methods: Symmetric Eigendecomposition (Focus)

2. Iterative Methods: Coupled Newton (or Higher-Order) Inverse
Iteration [Higham, 2008, Lakic, 1998]

3. Warm-Started QR Algorithm (Orthogonal Iteration)

Key Idea: Compute eigendecomposition of A “ Q!QT , then con-
struct matrix root inverse by A´1{4 “ Q!´1{4QT , with as small
modification to A as possible.

Practical challenge of supporting this computation on di!erent hardware

platforms:

§ torch.linalg.eigh or torch.linalg.qr requires cuSOLVER for

NVIDIA, rocSOLVER for AMD.

§ CPU o”oading or coupled inverse iterations for MTIA.

Pseudocode
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Performance Optimizations

1. Periodic Root Inverse Computation:
§ Periodically compute the matrix root inverses every

precondition frequency iterations.

§ Introduces staleness in the matrix root inverses.

2. Blocking and Merging:
§ Block large tensors and apply Shampoo to each block.

§ Merge away small consecutive dimensions.

3. Distributed Computation and Memory via DTensor:

§ Distribute computation and optimizer states of di!erent parameter

blocks in distributed data-parallel training to reduce computational

and memory requirements.

§ AllGather updates at every iteration.

4. foreach Operators (Horizontal Fusion)

5. PyTorch 2.0 Compiler (Vertical Fusion)
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For More Details...

Our open-source implementation is available at:
github.com/facebookresearch/optimizers

Questions?

https://arxiv.org/pdf/2309.06497.pdf
https://github.com/facebookresearch/optimizers/tree/main/distributed_shampoo
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Technical Challenges in Shampoo

In training:

1. Shampoo requires more computation
2. Shampoo requires more memory
3. Shampoo uses complex operations
4. Complex checkpointing
5. More hyper-parameters
6. ...

https://arxiv.org/pdf/2309.06497

The main focus of this presentation.



More Memory/Computation Needed

Memory (*):

- For AdaGrad, we need P where the number of parameters is P.
- For Shampoo, we need at least 4P.

Computation (**)

- For AdaGrad, computational cost is O(P)
- For Shampoo, it is O(P * b)

https://arxiv.org/pdf/2309.06497

(*): Assuming 2D tensors.
(**): Assuming 2D tensors. GEMM cost for each block is O(b3) where the number of 
blocks is d1/b * d2/b.



Idea: DDP Naive Shampoo
DDP: Distributed Data Parallel

PyTorch’s DDP provides this. PyTorch’s DDP optimizer interface

AdaGrad

Shampoo
(naive)

Usually this optimizer is very lightweight.

It highly depends on the model, but if fwd/bwd exec 
time is 100%:

- AdaGrad precond + param update: 2%
- Shampoo root-inverse: 10000%
- Shampoo precond + param update: 100%



1. Precondition Frequency

Shampoo
(naive)

Shampoo
+ Root-inverse frequency

Execute root-inverse computation every N 
iterations (where N is, for example, 8000)



2. DDP Distributed Shampoo 

Shampoo
+ Root-inverse frequency

DDP Distributed Shampoo
+ precond frequency

Precondition

Preconditional
l-r

ed
uc

e

all-gather Update
ParametersGPU 0

GPU 1 all-gather Update
Parameters

Partitioning using 
max_preconditioner_dim

Partial 
computation

AllGather to construct 
a full set of tensors.

# of GPUs for Shampoo 
distribution is determined by 
num_trainers_per_group

fwd/bwd

fwd/bwd

Precondition

al
l-r

ed
uc

e

Update
ParametersGPU 0

GPU 1

Partitioning using 
max_preconditioner_dim

Full 
computation

fwd/bwd

fwd/bwd Precondition Update
Parameters

Based on computation assignment, root-inverse computation is 
also parallelized by num_trainers_per_group.

https://arxiv.org/pdf/2309.06497



Memory/Computation/Convergence Trade-Off

Compared with the original Shampoo, where N is number_trainers_per_group

- Memory (*): 4P
    -> (4P / N + P) * C(N)

- Computation (**): O(P * b)
    -> O(P * b / N) * C(N) + Ocomm(P) * C(N) + Oupdate(P)

-

(*): Assuming 2D tensors. 4P/ N for local Shampoo states. “+ P” accounts for the communication 
buffer before parameter updates. C(N) is a coefficient for imbalanced distribution across trainers 
(>= 1.0).
(**): Assuming 2D tensors. O(P * b / N) for precondition cost. Oupdate(P) to update parameters in the 
end. Ocomm(P) is an overhead of AllGather.

In practice, C(N) is an important imbalance factor as we 
cannot distribute blocked parameters evenly across all the 
trainers. When N is large, C(N) gets larger.

Sometimes N != all the number of GPUs used for training.

Per-Iteration
Performance Convergence Memory Usage

Large 
precondition_frequency Increase Worse No effect

Large 
max_preconditioner_dim

Sweet spot 
around 2K - 8K Better Increase

Large 
num_trainers_per_group

Sweet spot 
around 16 - 64 No effect (Depends)



More Optimization Ideas (1/2)

In addition to this, you can come up with more ideas:

- Computation-communication overlapping (by having S stages)

- Optimizing rank-block mapping

Precondition
al

l-r
ed

uc
e

all-gather

Update
ParametersGPU 0 Precondition

all-gather

Precondition

all-gather

How to map rank and blocks for a large N?
Note that for the block size (b1 * b2):

- Memory cost: b1 * b2
- Computation cost: b12 + b22

- Communication cost: maxrank(sum(block_size))

Where S = 3.



More Optimization Ideas (2/2)

- Quantized computation/communication

- Root-inverse computation overlapping

e.g., use quantized comm to reduce 
communication cost.

Precondition Update
ParametersGPU 0 fwd/bwd

CPU 0 Root-Inverse Computation

Precondition Update
Parametersfwd/bwd...



Practicality Aspects

- Stability of complex operations (matrix root-inverse computation)
- Prefer CPU? New algorithm?

- Distributed checkpointing
- How to check-point optimizer states?
- How to reshard it if we want to change the number of trainers?

- Simple hyper-parameter tuning
- Shampoo exposes too many hyperparameters that affect 

memory/computation/convergence/ …
- Autotuning? What is an objective function?

- Support for FSDP
- Simpler code for maintenance

Most optimizations introduce additional complexity, 
making Shampoo harder to use.



Conclusions

Distributed Shampoo:

- Alleviates performance and memory consumption issues
- Introduces further optimization opportunities and complexity

Understanding the entire trade-off is crucial for building a good system.

- Distributed Shampoo is a good example. Don’t make it too complex.
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