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Abstract
We evaluate the current state of collective communication on GPU-
based supercomputers for large language model (LLM) training
at scale. Existing libraries such as RCCL and Cray-MPICH exhibit
critical limitations on systems such as Frontier – Cray-MPICH un-
derutilizes network and compute resources, while RCCL suffers
from severe scalability issues. To address these challenges, we in-
troduce PCCL, a communication library with highly optimized
implementations of all-gather and reduce-scatter operations tai-
lored for distributed deep learning workloads. PCCL is designed
to maximally utilize all available network and compute resources
and to scale efficiently to thousands of GPUs. It achieves substan-
tial performance improvements, delivering 6–33× speedups over
RCCL and 28–70× over Cray-MPICH for all-gather on 2048 GCDs
of Frontier. These gains translate directly to end-to-end perfor-
mance: in large-scale GPT-3-style training, PCCL provides up to
60% and 40% speedups over RCCL for 7B and 13B parameter models,
respectively.

1 Introduction
In the last few years, large language models (LLMs) have resulted in
significant advancements in natural language processing [6, 12, 22].
These models are extremely adept at generating and manipulating
text with high fidelity and have facilitated automation in tasks such
as text summarization, translation, code generation, and personal
learning. At the core of these advancements are two key factors:
the use of large-scale datasets for training and the development
of models with billions of parameters. Both aspects are crucial for
enabling LLMs to achieve their remarkable performance but come
with significant computational demands. Training these models
requires extensive hardware resources, often involving thousands
to tens of thousands of GPUs to handle the immense computational
load. For instance, LLaMA 3, a model with 405 billion parameters,
was trained using 16,000 H100 GPUs [12]!

At large GPU counts, communication quickly becomes the pri-
mary bottleneck to efficient scaling. While modern GPUs lever-
age specialized tensor cores to accelerate matrix operations in
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LLMs, these speedups increase the relative cost of communica-
tion. Advanced parallel training algorithms – such as ZeRO [19]
and FSDP [27] – depend heavily on collective operations like all-
gather and reduce-scatter, which frequently move tens to hundreds
of megabytes per call. As both the number of GPUs and message
sizes grow, efficiently handling this communication becomes in-
creasingly difficult. To support the demands of large-scale deep
learning, communication libraries must therefore be highly scal-
able and specifically optimized for these workloads.

In this work, we focus onOLCF’s Frontier, anAMDMI250X based
supercomputer and evaluate the efficacy of existing communication
libraries for collective performance in deep learning. Specifically,
we examine all-gather and reduce-scatter collectives, which are
widely used in distributed training frameworks like ZeRO and FSDP.
On Frontier, users have two main choices for the communication
library: Cray-MPICH, an MPICH-based implementation of MPI
optimized for HPC workloads, and RCCL, AMD’s ROCm Collective
Communication Library designed for GPU-centric communication.
We demonstrate that both libraries exhibit unique shortcomings on
Frontier, leading to inefficiencies that hinder scalability and make
them suboptimal for large-scale LLM training.
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Figure 1: Performance comparison of all-gather using Cray-
MPICH vs. RCCL on Frontier for two output buffer sizes of 64
and 128 MB. The ideal scaling behavior (flat horizontal line)
is not achieved by either library, highlighting their limited
scalability at increasing GCD counts.

Cray-MPICH fails to fully utilize the available compute and
network resources on each node, sustaining only a fraction of the

https://doi.org/XXXXXXX.XXXXXXX


, , Singh et al.

system’s peak bandwidth. While RCCL achieves high bandwidth
at small scales, its performance deteriorates sharply as we scale to
hundreds or thousands of GPUs. Figure 1 illustrates these issues by
benchmarking the all-gather collective on Frontier with two output
buffer sizes: 64 and 128 MB. For both message sizes, the ideal scaling
behavior is a flat horizontal line. However, we observe significant
performance degradation in both libraries beyond 256 processes,
highlighting their limitations and making them suboptimal for
large-scale training workloads.

This work introduces PCCL, the Performant Collective Com-
munication Library, designed to accelerate collective operations -
specifically all-gathers and reduce-scatters - for parallel deep learn-
ing workloads. PCCL includes highly optimized implementations
tailored for message sizes in the tens to hundreds of megabytes,
which are commonly encountered in large-scale training. Our de-
sign focuses on alleviating key performance bottlenecks in Cray-
MPICH and RCCL by leveraging the strengths of both: harness-
ing the system’s networking and accelerated computing resources
while optimizing for latency-bound scenarios that emerge at ex-
treme scale.

With all of these optimizations in place, our implementations of
all-gather and reduce-scatter achieve significant speedups over both
RCCL and Cray-MPICH. For instance, on 2048 GPUs of Frontier (256
nodes), our all-gather implementation delivers a 6–33× speedup
over RCCL and a 28–70× speedup over Cray-MPICH. These im-
provements also seamlessly translate to end-to-end training perfor-
mance. On 1024 GCDs of Frontier, replacing RCCL with PCCL for
collective communication results in substantial training speedups –
60% for a 7B parameter model and 40% for a 13B parameter model.
Our optimized collectives thus pave the way for scalable, high-
performance training of large-scale deep learning models on next-
generation GPU supercomputers.

• We analyze the limitations of existing communication li-
braries, Cray-MPICH and RCCL, for all-gather and reduce-
scatter collectives in parallel deep learning workloads.

• We develop optimized implementations of these collectives
in PCCL, with a focus on effectively utilizing system re-
sources and ensuring scalability in latency bound scenarios.

• We conduct end-to-end benchmarking of large-scale LLM
training workloads to validate the practical benefits of our
optimizations, demonstrating significant speedups in train-
ing throughput.

2 Background
In this section, we provide relevant background on parallel or dis-
tributed deep learning with a focus on the role of collective commu-
nication in the functioning of state-of-the art parallel deep learning
frameworks.

2.1 Parallel Deep Learning and Collective
Communication

While several categories of parallelism exist in deep learning (tensor
parallelism [20], pipeline parallelism [15], expert parallelism [18]),
this work focus on sharded data parallelism, a widely used approach
for large scale training [19, 27]. In this paradigm, model parameters

and gradients are partitioned (or "sharded") across GPUs, which sig-
nificantly reduces memory requirements and allows for the training
of extremely large models. Two critical collective communication
operations – all-gather and reduce-scatter – play a central role in
sharded data parallelism. These operations aggregate distributed
data across GPUs: the all-gather operation collects model param-
eters from all shards to form a complete copy, while the reduce-
scatter operation performs a reduction and distributes gradients
across participating processes. In Figure 2, we plot the all-gather
and reduce-scatter message sizes for three frameworks that support
sharded data parallelism – FSDP [27], Deepspeed ZeRO-3 [19], and
AxoNN [21]. Notice how the message sizes across these three frame-
works are in the tens to hundreds of megabytes, even becoming
more than a gigabyte for larger models.
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Figure 2: Distribution of all-gather and reduce-scatter mes-
sage sizes for several deep learning frameworks for a range
of transformer [25] model sizes. The y-axis represents input
buffer sizes for all-gathers but output buffer sizes for reduce-
scatters.

2.2 Algorithms for All-Gathers and
Reduce-Scatters

Efficient implementations of all-gather and reduce-scatter opera-
tions are critical for sharded data parallelism. In this work, we build
on several well-established algorithms and introduce enhancements
to improve performance and scalability.

Ring: The ring algorithm is a popular method for implementing
collective communications due to its simplicity and efficiency in
certain network topologies. In a ring-based all-gather or reduce-
scatter, each process communicates with its immediate neighbors
in a circular fashion. While effective at moderate scales and large
message sizes, the ring algorithm can suffer from inefficiencies at
larger scales due to its latency term being linearly proportional to
the number of processes. For example, the communication time of
a ring all-gather can be modeled as

𝑇ring = 𝛼 × (𝑝 − 1) + 𝛽 × 𝑝 − 1
𝑝

𝑚
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where 𝑝 is the number of processes, 𝛼 represents the startup latency
per message,𝑚 is the size of the input buffer on each GPU, and 𝛽

is the inverse of the peer-to-peer bandwidth.

Recursive Halving/Doubling: A popular way of minimizing la-
tency costs involves utilizing the recursive halving or doubling
algorithms for all-gathers and reduce-scatters respectively. These al-
gorithms divide the communication task into logarithmically many
steps, and hence their performance scales better than the ring algo-
rithm. For example, the communication time for a recursive-halving
all-gather can be modeled as

𝑇rec = 𝛼 × log2 (𝑝) + 𝛽 × 𝑝 − 1
𝑝

𝑚

where the terms are the same as before. For small message sizes or
very large process counts, the logarithmic growth in the latency
term often leads to lower overall communication costs. More details
about these and other algorithms can be found in Thakur et al. [23].

3 Current State of Cray MPICH and RCCL
As established in the previous section, all-gather and reduce-scatter
operations are important collectives in parallel deep learning [19,
21, 27]. Thus, to scale model training to the thousands of GPUs
required for large models, we need highly efficient and scalable
implementations of these collectives – particularly for the large
message sizes characteristic of deep learning workloads (see Fig-
ure 2). This section investigates the state of the current state of
the practice of popular communication libraries - Cray-MPICH
and RCCL, for these collectives. We find unique issues that plague
the performance of each library, and we highlight these below via
experiments on the Frontier supercomputer.

3.1 Benchmarking Methodology
First, let us look at the methodology we used to benchmark the
performance of the two libraries on Frontier.

Process Placement and NUMA Configuration: Each node on
Frontier is equipped with four GPUs, which are each partitioned
into two Graphic Compute Dies (GCDs). We therefore launch one
MPI process per GCD, binding each process to seven CPU cores
and leaving two cores per NUMA region free for operating-system
tasks and to minimize noise. To ensure NUMA-aware placement
of network interfaces, we configure the OFI provider with MPICH_
OFI_NIC_POLICY=USER and MPICH_OFI_NIC_MAPPING="0:0-1;1:
2-3;2:4-5;3:6-7", which pins each MPI rank to the appropriate
NIC ports in its NUMA domain.

Message Sizes and Measurement Protocol: In line with Figure 2,
our evaluation focuses on message sizes from 16MB up to 1GB.
Note that for all-gathers and reduce-scatters, these values refer
to the output and input message size per GPU respectively. For
each combination of library, collective, message size, and GPU
count, we perform ten independent runs. We measure the total time
spent in the collective on each run using AMD’s hipeventtimers
instrumentation and computed the mean and standard deviation
over the ten runs to ensure statistical robustness.

Communication Tuning:We disable all forms of eager messaging
in the OFI/CXI provider by setting FI_CXI_RDZV_THRESHOLD=0,

FI_CXI_RDZV_GET_MIN=0, and FI_CXI_RDZV_EAGER_SIZE=0. For
the message sizes we target, disabling eager messaging significantly
improves collective performance for both Cray MPICH and RCCL.
We enable GPU Direct RDMA for GPUs and NICs sharing the same
NUMA node via NCCL_NET_GDR_LEVEL=PHB and disable HSA’s
SDMA engine by setting HSA_ENABLE_SDMA=0, ensuring that data
transfers bypass the host.

Software Stack: Our software stack comprises of ROCm 6.2.4,
RCCL 2.20.5, Cray MPICH 8.1.31 distribution, libfabric 1.15.2 and
the aws-ofi-rccl plugin version v1.4.

3.2 Poor MPI performance at lower GPU counts
Figure 3 (left) presents a comparative analysis of all-gather perfor-
mance between Cray MPICH and RCCL on Frontier, specifically
for large message sizes of 256 MB and 512 MB. Despite both li-
braries implementing a ring-based collective algorithm over the
OpenFabrics Interfaces (OFI) layer, RCCL achieves approximately a
4× performance advantage in this bandwidth-bound scenario. To
explain this disparity, we examine hardware performance counters
provided by the Cassini Slingshot-11 Network Interface Controllers
(NICs) [7] on each Frontier node.

Our investigation focuses on the counters parbs_tarb_pi_po
sted_pkts and parbs_tarb_pi_non_posted_pkts, which, based
on our understanding, represent the count of packets read from
and written to each NIC within a node during job execution. The
middle and right plots of Figure 3 demonstrate a significant diver-
gence in NIC utilization between the two libraries. Cray MPICH
constrains all read operations to NIC 3 and all write operations
to NIC 0, effectively creating a single-NIC bottleneck. Conversely,
RCCL distributes network trafficmore uniformly across all available
NICs. This equitable load distribution leads to enhanced bandwidth
utilization and a substantial reduction in all-gather execution time.
This observed imbalance in NIC utilization directly accounts for
the pronounced performance gap between Cray MPICH and RCCL
in this bandwidth-bound context.

Explanation 1

Cray MPICH routes all network traffic through a single
NIC, resulting in severe underutilization of the available
network bandwidth. In contrast, RCCL effectively balances
node traffic across all four NICs, achieving a four-fold
performance improvement over Cray MPICH.

3.3 Poor Performance of MPI_Reduce_scatter
Next, we examine reduce-scatter performance. As shown in Fig-
ure 4, Cray MPICH (orange) performs significantly worse than
RCCL (green). Notably, this performance gap is far greater than the
4× difference observed earlier for all-gather in Figure 3. While the
NIC underutilization issue outlined in the previous subsection still
persists for Cray-MPICH Reduce-scatters, it alone cannot explain
this performance disparity. We hypothesize that this disparity stems
from the way reduction computations are scheduled in the two li-
braries. Cray MPICH performs the reduction operations required
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Figure 3: The left plot compares all-gather performance of Cray MPICH and RCCL on Frontier for a bandwidth-bound scenario
with large message sizes (256 and 512 MB) and small GPU counts. The middle and right plot show the number of packets read
from (left) and written to (right) each of the four NICs on a Frontier compute node during all-gather operations.

for reduce-scatter on the CPU, introducing significant computa-
tional overheads for large messages. In contrast, RCCL efficiently
performs these operations by offloading them to the GPUs, lever-
aging their parallel processing capabilities.

To test this hypothesis, we manually implemented the reduce-
scatter operation using Cray MPICH point-to-point sends and re-
ceives, while scheduling the reduction operations on the GPU via a
HIP vector-addition kernel. As shown in Figure 4, our implemen-
tation (blue line) achieves performance that is several times faster
than Cray MPICH’s native reduce-scatter, further supporting our
hypothesis.
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Figure 4: Performance comparison of reduce-scatter using
CrayMPICH, RCCL, and a custom implementation of reduce-
scatter that uses CrayMPICH P2P and GPU compute kernels.

Explanation 2

Cray MPICH’s CPU-based reduction operations in reduce-
scatter introduce significant overhead, which in combina-
tion with the NIC underutilization issue, results in a 10-15x
performance gap compared to RCCL’s GPU-accelerated
reductions.

3.4 Poor Scaling of RCCL and MPI at Large GPU
Counts

Figure 1 shows all-gather performance for Cray MPICH and RCCL
when sending relatively small messages across increasing numbers
of GCDs. We observe that both libraries exhibit poor scaling behav-
ior at large GPU counts. On investigating deeper, we found that
both Cray MPICH and RCCL only support the ring algorithm for
all-gathers and reduce-scatters (see Section 2.2). While effective for
bandwidth-bound workloads, the ring algorithm performs poorly
in latency-bound scenarios because each process must send and re-
ceive (𝑝−1)messages sequentially, causing the total communication
time to grow linearly with the number of processes.

Curiously, neither library implements more optimal algorithms
like recursive doubling or halving (see Section 2.2), which are
known to reduce the number of communication steps to log2 𝑝
and are generally preferred for small message sizes or high process
counts. This lack of algorithmic diversity directly contributes to
the sub-optimal scaling we observe at large GPU counts.

Explanation 3

Both Cray MPICH and RCCL rely solely on the ring algo-
rithm for all-gather and reduce-scatter, leading to poor scal-
ing inlatency-bound scenarios. More efficient algorithms
like recursive doubling and halving are not supported.

4 Optimizing All-gathers and Reduce-scatters
In Section 3, we identified several challenges affecting RCCL and
Cray-MPICH in the context of all-gather and reduce-scatter col-
lectives for deep learning workloads. These challenges create sig-
nificant barriers to efficiently scaling large model training across
thousands of GPUs. The central theme of this work is to developed
optimized implementations of all-gather and reduce-scatter collec-
tives that address these challenges. In this section, we present our
proposed solutions, which are implemented in a new library called
PCCL (Performant Collective Communication Library). We begin
by discussing the design principles and strategies that drive our
proposed solutions.
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Figure 5: Diagram showing our hierarchical (two-level) implementation to dissolve an all-gather operation on a GPU-based
cluster with N nodes and M GPUs per node. In Step 1, we performs inter-node all-gathers, in step 2, we perform intra-node
all-gathers and in step 3, each GPU performs a local shuffle of the received data.

4.1 Hierarchical Collective Algorithms for Load
Balancing NIC Traffic

Our optimized implementations of all-gather and reduce-scatter
are based on a two-level hierarchical design. While prior work has
demonstrated that hierarchical algorithms can reduce latency and
improve scalability in collective operations [3, 24], our primary
motivation for adopting this design is to address the NIC underuti-
lization problem identified in Section 3.2. Now, we provide a brief
overview of the inner workings of our hierarchical design.

We illustrate our design in Figure 5 for an all-gather operation
on a hypothetical system with N nodes and M GPUs per node. The
global collective operation is divided into two distinct phases using
sub-communicators: inter-node sub-communicators and intra-node
sub-communicators. Inter-node sub-communicators are formed by
grouping corresponding GPUs across nodes in a group. For example,
in Figure 5, all GPUs with the same index across nodes are grouped
together to form a total ofM inter-node sub-communicators. Sim-
ilarly, intra-node sub-communicators are formed by grouping to-
gether all GPUs within a node.

The hierarchical communication unfolds in three steps. First, in
the inter-node all-gather phase, we schedule an all-gather operation
in all of the inter-node sub-communicators. This is illustrated in
Step-1 of Figure 5. Once this phase is completed, each GPU in a node
has received data from its corresponding GPU in the other nodes.
Now, within every node we have the entire result of the all-gather
operation, but the data is split across GPUs. Therefore, the next step
is to perform an intra-node all-gather operation, which is illustrated
in Step-2 of Figure 5. Once this phase is complete, each GPU now has
the complete output in its memory, albeit in an incorrect order. So,
the final step involves a device-local shuffle operation, where each
GPU rearranges its data to put in a correct order. This is illustrated
in Step-3 of Figure 5. The device-local shuffle is performed using
a transpose kernel in practice. We implement reduce-scatter in
a similar manner – but starting with the intra-node phase first,
followed by the inter-node phase.

Having explained the workings of our hierarchical design, let
us now see how it addresses the NIC underutilization problem.
An important aspect of our design in that it schedules all of the
all-gather operations in Step-1 of Figure 5 concurrently on all of
the inter-node sub-communicators. We leverage this fact to utilize

all NICs on a node concurrently. A Frontier node has four NICs,
each connected to two GCDs. In our implementation, we ensure
that each GCD exclusively sends and receives traffic to and from
its corresponding NIC (e.g. - GCDs 0 and 1 to NIC 0, GCDs 2 and
3 to NIC 1, and so on). This is how we ensure that the inter-node
traffic is evenly distributed across all NICs in PCCL.

4.2 Choice of Communication Libraries for
Each Level of the Hierarchy

We now describe the choice of communication libraries we make
for each level of the hierarchy, starting with the intra-node level.

GPU-vendor libraries like RCCL are highly optimized for intra-
node topologies, efficiently utilizing shared memory, PCIe, and
Infinity fabric connections. These optimizations significantly out-
perform most MPI implementations in managing GPU-to-GPU
communication within a node [5]. Hence, we simply rely on RCCL
for all of our communication in the intra-node phase.

Prior work has reported that RCCL is not robust at scale and can
crash during training runs [9]. This issue has also been noted by
HPE1 and in the OLCF User Guide2. Thus for reliability reasons,
we opt to use Cray-MPICH for all inter-node communication.

4.3 Choice of Algorithms for Inter-Node
Communication

Our choice of communication algorithms for each level of the hier-
archy is driven by performance considerations and the limitations
of available libraries. Since RCCL only supports the ring algorithm
for intra-node collectives, we adopt this as our intra-node commu-
nication strategy. Fortunately, ring is well-suited for this context,
as the small number of GCDs within a node (eight) ensures that
ring can effectively saturate the available bandwidth.

The inter-node phase, however, presents greater challenges.With
potentially thousands of GPUs participating in the collective, la-
tency concerns become critical. Cray-MPICH, which we rely on for
inter-node communication due to RCCL’s instability at scale, offers
only the ring algorithm by default. Unfortunately, as described in

1https://www.olcf.ornl.gov/wp-content/uploads/OLCF_AI_Training_0417_2024.pdf
2https://docs.olcf.ornl.gov/software/analytics/pytorch_frontier.html#environment-
variables

https://www.olcf.ornl.gov/wp-content/uploads/OLCF_AI_Training_0417_2024.pdf
https://docs.olcf.ornl.gov/software/analytics/pytorch_frontier.html#environment-variables
https://docs.olcf.ornl.gov/software/analytics/pytorch_frontier.html#environment-variables
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Section 2.2 ring algorithms’s linear scaling in latency with respect
to the number of processes makes it suboptimal at large-scale.

To address this, we implement alternative algorithms with im-
proved scaling properties. Specifically, we utilize recursive doubling
for all-gather operations and recursive halving for reduce-scatter
operations [23]. These algorithms offer logarithmic latency terms
(see Section 2.2), enabling significantly better performance as the
number of GPUs increases. Our implementations are based on Cray-
MPICH’s point-to-point send and receive operations. Moreover, for
reduce-scatter operations, we also ensure that our vector addition
computation is efficient by scheduling it on the GPU cores.

In Figure 6 (left), we demonstrate the speedup of using recursive
halving over ring in the inter-node phase of our reduce-scatters.
Note that both of these implementations use RCCL’s ring algorithm
for the intra-node phase. We observe that ring is the preferred
choice of algorithm for inter-node communication in bandwidth
bound scenarios (smaller process counts and/or larger message
sizes). However, as expected recursive halving becomes themore op-
timal algorithm for latency bound scenarios (larger process counts
and/or small message sizes).

We develop these implementations in C++ as part of PCCL
and expose Pybind11 bindings to enable seamless integration with
Python-based deep learning frameworks such as ZeRO-3 [19]. Im-
plementing these algorithms in C++ proves to be critical for achiev-
ing high performance. As shown in Figure 6 (right), a baseline
implementation using Python and mpi4py can be nearly 4× slower
than our optimized C++ version—compare the performance at 1024
GCDs. This highlights the importance of minimizing CPU-side
overhead and reducing language-level inefficiencies for large-scale
collective communication.

5 Experimental Setup
In this section, we provide an overview of our empirical evalua-
tion of PCCL, the communication library proposed in this work,
on state-of-the-art multi-GPU supercomputers. We conduct our
experiments on the Frontier supercomputer at Oak Ridge National
Laboratory and the Perlmutter supercomputer at the National En-
ergy Research Scientific Computing Center. First, we compare the
performance of all-gather and reduce-scatter operations, which are
the primary focus of this paper. As mentioned in Section 2, these
collective communication primitives are critical for the scalability
of distributed deep learning workloads. Second, we evaluate the
end-to-end performance of a parallel deep learning framework -
DeepSpeed ZeRO-3 [19], to demonstrate the practical impact of
PCCL in real-world training scenarios of multi-billion parameter
models at scale.

5.1 Comparing Performance of Collectives
Our experiments cover a range of message sizes from 16MB to
1GB. For reduce-scatter, this range represents the size of the input
buffer on each GPU, while for all-gather, it corresponds to the
size of the output buffer on each GPU. For each message size, we
measure performance across 32 to 2048 GCDs (4 to 256 nodes)
on Frontier, and 32 to 2048 GPUs (8 to 512 nodes) on Perlmutter.
We use HIP and CUDA event timers to measure the runtime of
collective operations. On Frontier, our setup for process placement,

communication tuning, and software stack is consistent with the
configuration described in Section 3.1. On Perlmutter, we adopt a
similar strategy by launching one process per GPU, mapping each
GPU to its nearest NIC, and disabling eager communication in the FI
backend. The software stack used on Perlmutter comprises of NCCL
2.24.3, CUDA 12.4, and Cray-MPICH 8.1.30 in our experiments.

5.2 Comparing End-to-End Training
Performance

To evaluate the practical benefits of PCCL, we measure the end-
to-end training performance of large language models using Deep-
Speed ZeRO-3 [19], a widely adopted parallel deep learning frame-
work. We perform strong scaling experiments on 7B and 13B pa-
rameter GPT-style transformer models [1] using model hyperpa-
rameters from Zhang et al. [26]. We list these hyperparameters
in Table 1. We use a global batch size of 4 million tokens and a
sequence length of 2048 and use the OpenWebText [10] corpus to
create our training data.

Table 1: Architectural details of the GPT-style transformer
models [1] used in the experiments. We borrow these hyper-
parameters from Zhang et al. [26].

Model # Parameters # Layers Hidden-Size # Heads

GPT-7B 7B 32 4096 32
GPT-13B 13B 40 5120 40

On Frontier, we scale from 128 to 1024 GCDs, and on Perlmutter,
we scale from 256 to 2048 GPUs. We first run ZeRO-3 with RCCL
on Frontier and NCCL on Perlmutter, which represent the default
communication libraries used by most parallel training frameworks.
We then swap in PCCL to handle all-gather and reduce-scatter
operations and rerun the experiments to observe its impact on
training performance. For each configuration, we run 10 training
batches across three trials and compute the average throughput
over the last 8 batches in each run to minimize warm-up effects.

6 Results
We now present and analyze the results of the empirical experi-
ments described in Section 5.

6.1 Performance Improvements Using PCCL
We begin by examining the performance of PCCL for all-gather
and reduce-scatter operations and comparing it against other state-
of-the-art communication libraries.

6.1.1 Comparison with Cray-MPICH and RCCL on Frontier. Let us
start with examining PCCL’s performance on the Frontier super-
computer. Figure 7 shows the performance of all-gather operations
on Frontier using PCCL and other communication libraries. We
evaluate two sets of output buffer sizes: 64 and 128 MB (left plot),
and 256 and 512 MB (right plot). For each configuration, we scale
the number of GCDs from 32 to 2048. Since the output buffer size
per GPU remains fixed, the ideal performance curve for each buffer
size is a flat horizontal line, indicating perfect scaling.
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Figure 6: (Left) Heatmap showing speedups from using recursive halving over the ring algorithm in the inter-node phase of the
reduce-scatter implementation in PCCL, and (Right) Performance comparison of the C++ (with Pybind11) and Python based
implementations of reduce-scatter in PCCL.
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Figure 7: Performance comparison of all-gather using Cray MPICH, RCCL, and PCCL, for different per-process output buffer
sizes (left plot: 64 and 128 MB, right plot: 256 and 512 MB) and varying process counts on Frontier.

However, we observe that RCCL and Cray-MPICH fall short of
this ideal. For smaller message sizes in the left plot, RCCL (green
lines) scales poorly, with execution time increasing almost linearly
with the number of processes. For the larger message sizes in the
right plot, RCCL performs well up to 128 processes, but experiences
significant degradation beyond that—mirroring the trends seen
with smaller messages. Cray-MPICH (orange lines) shows a similar
pattern, with performance dropping sharply as we scale to higher
process counts. We attribute the poor scaling of RCCL and Cray-
MPICH to their reliance on the ring algorithm, whose latency term
grows linearly with the number of processes.

In contrast, PCCL (blue lines) maintains nearly flat scaling trends
across all message sizes in both plots, demonstrating significantly
better scalability and efficiency. We attribute PCCL’s better perfor-
mance to its hybrid strategy, described in Section 4, which exploits
the heterogeneous network topology. By using the ring algorithm

within nodes (limited to eight processes) and recursive doubling
across nodes, PCCL bounds the latency overhead that otherwise
grows linearly in traditional ring-based implementations. This de-
sign enables better scalability across large GPU counts. The per-
formance improvements of PCCL over RCCL and Cray-MPICH
become increasingly pronounced as we increase the number of pro-
cesses (GCDs). At 2048 processes, PCCL achieves speedups ranging
from 7 – 24× over RCCL, and an even larger 27 to 82× over Cray-
MPICH, depending on the message size. These results highlight
PCCL’s ability to deliver high-performance communication at scale.

Next, let us examine reduce-scatter performance on Frontier, as
shown in Figure 8. Again, we observe similar trends as in the case
of all-gather. Both RCCL and Cray-MPICH fall short of the ideal
performance curve, and PCCL acheives significant speedups over
both libraries with increasing scale.
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Figure 9: Heatmaps showing speedups from using PCCL over RCCL for all-gather (left) and reduce-scatter (right) on Frontier.
The speedup is shown as a function of per-process output/input buffer size (in MB) and process count.

Since RCCL is the default library used by most distributed deep
learning applications on AMD platforms, let us take a closer look
at how PCCL compares against it. Figure 9 shows the speedups
of PCCL over RCCL for all-gather (left) and reduce-scatter (right)
operations on Frontier, respectively, across a range of output buffer
sizes and process counts. In the top-left regions of both heatmaps–
large messages and small GPU counts, which represent bandwidth-
bound scenarios–PCCL underperforms RCCL. For instance, with
a 1024 MB buffer at 32 GCDs, speedups are around 0.52× for all-
gather and 0.55× for reduce-scatter. This is expected, as RCCL’s
flat ring algorithm can theoretically achieve higher bandwidth than
PCCL’s hierarchical two-phase strategy [3].

However, in the bottom-right corners–small messages and large
GPU counts, where latency dominates–PCCL delivers substantial
gains. For both collective operations at 2048 GCDs, PCCL achieves
speedups of more than 30× over RCCL for 16MB, 32MB, and 64MB
message sizes, respectively! In contrast, for larger message sizes like
512MB and 1024MB, the speedups are smaller but still significantly

high —- 11.4 and 7× for all-gather, and 11.4 and 6.2× for reduce-
scatter. These results underscore PCCL’s strength in latency-bound
scenarios and highlight its ability to scale efficiently to thousands
of GPUs.

6.1.2 Comparison with Cray-MPICH and NCCL on Perlmutter. We
now evaluate PCCL’s effectiveness on Perlmutter, which features
NVIDIA A100 GPUs. Figure 10 presents results for all-gather (left)
and reduce-scatter (right) operations with message sizes of 64MB
and 128MB–representing the output buffer sizes for all-gather and
input buffer sizes for reduce-scatter, respectively. We observe sim-
ilar trends as on Frontier. Both Cray-MPICH (orange lines) and
NCCL (black lines) fall short of ideal scaling, which would appear as
a flat horizontal line. Like RCCL on Frontier, NCCL’s performance
begins to degrade noticeably beyond 128 processes. In contrast,
PCCL scales nearly perfectly across both collectives, maintaining
desirable flat performance curves and achieving speedups in the
range of 1.3 – 4.6× over NCCL and 8.8–15× over Cray-MPICH on
1024 and 2048 GPUs!
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Figure 10: Performance comparison of all-gather (left plot) and reduce-scatter (right plot) using Cray MPICH, NCCL, and PCCL,
for two per-process buffer sizes (64 and 128 MB) and varying process counts on Perlmutter.

32 64 128 256 512 1024 2048
Number of processes (GPUs)

16

32

64

128

256

512

1024

O
ut

pu
t 

bu
ffe

r 
si

ze
 (

M
B)

0.99 1.5 1.3 1.4 1.8 3.8 5.7

0.67 1.2 1.7 1.6 1.6 4.0 4.6

0.59 0.84 1.3 1.9 1.7 2.7 4.6

0.6 0.71 0.94 1.5 2.1 2.4 3.0

0.63 0.69 0.79 0.96 1.6 2.0 2.5

0.61 0.71 0.76 0.84 1.0 1.3 2.1

0.63 0.7 0.79 0.79 0.81 0.84 1.2

Speedup of PCCL over NCCL for all-gather (Perlmutter)

0.5

0.75

1

2

3

4

5

32 64 128 256 512 1024 2048
Number of processes (GPUs)

16

32

64

128

256

512

1024

In
pu

t 
bu

ffe
r 

si
ze

 (
M

B)

1.0 1.5 1.8 2.1 3.2 2.8 3.6

0.74 1.0 1.8 1.9 2.7 3.9 4.2

0.66 0.79 1.1 1.9 2.1 2.8 3.8

0.66 0.63 0.76 1.2 1.9 2.6 3.0

0.69 0.65 0.66 0.92 1.4 2.1 2.5

0.7 0.68 0.67 0.86 0.98 1.4 2.2

0.72 0.69 0.69 0.84 0.85 0.9 1.2

Speedup of PCCL over NCCL for reduce-scatter (Perlmutter)

0.5

0.75

1

2

3

4

5

Figure 11: Heatmaps showing speedups from using PCCL over NCCL for all-gather (left) and reduce-scatter (right) on Perlmutter.
The speedup is shown as a function of per-process output/input buffer size (in MB) and process count.

Figure 11 examines how PCCL compares to NCCL across vari-
ous message sizes and GPU counts. Similar to RCCL, NCCL out-
performs our library in the top-left regions of the heatmaps, rep-
resenting bandwidth-bound scenarios. For instance, with 32 pro-
cesses and a 1024 MB message size, NCCL is nearly 1.5× faster than
PCCL. However, as we transition to latency-bound regions in the
bottom-right corners of the heatmap, PCCL’s advantages become
evident. Around 1024–2048 processes and 16–32MB message sizes,
PCCL achieves significant speedups over NCCL, ranging from 3–5×.
While speedups for larger message sizes are smaller, they remain
notable. For example, at 2048 processes and 128–512 MB message
sizes, PCCL is approximately 2–3× faster than NCCL. These results
highlight PCCL’s effectiveness in accelerating collective communi-
cation for parallel deep learning – across both extreme scales and
diverse GPU architectures.

6.2 Impact on DL Applications’ Performance
Finally, we examine how these communication gains translate into
improvements in end-to-end training performance at scale. The
left panel of Figure 12 presents the batch times for strong scaling
GPT-3-style transformer training on Frontier using the DeepSpeed
ZeRO-3 framework [19]. Green lines represent ZeRO-3 runs with
RCCL, the default communication library and blue lines represent
runs with all-gather and reduce-scatter collectives in ZeRO-3 issued
with PCCL. At smaller scales (128 and 256 GCDs), both libraries
perform comparably. However, as we scale further, PCCL begins to
outperform RCCL. At 512 GCDs, PCCL reduces batch time by nearly
30% for the 7B model and by 16% for the 13B model. When scaling
to 1024 GCDs, RCCL fails to maintain strong scaling and even
exhibits increased batch times compared to 512 GCDs. In contrast,
PCCL continues to scale efficiently, delivering a 60% speedup for
the 7B model and a 39% speedup for the 13B model. Finally, at
2048 GCDs, although both libraries show diminishing returns in



, , Singh et al.

128 256 512 1024 2048
Number of processes (GCDs)

4

6

8
10

15

20

30

40
50
60

T
im

e 
pe

r 
ba

tc
h 

(s
)

Strong scaling performance of DeepSpeed-ZeRO-3 (Frontier)

RCCL (13B)
RCCL (7B)

PCCL (13B)
PCCL (7B)

256 512 1024 2048
Number of processes (GPUs)

2

3

4

5

6

T
im

e 
pe

r 
ba

tc
h 

(s
)

Strong scaling performance of DeepSpeed-ZeRO-3 (Perlmutter)

NCCL (7B)
PCCL (7B)

Figure 12: Strong scaling performance of Deepspeed ZeRO-3 using RCCL, NCCL, and PCCL, on Frontier (left) and Perlmutter
(right) for two model sizes: GPT-3 7B and GPT-3 13B.

strong scaling efficiency, PCCL still achieves substantial speedups
(70–80%) relative to RCCL.

We observe similar trends on Perlmutter, as shown in the right
panel of Figure 12. At 256 GPUs, NCCL outperforms PCCL by ap-
proximately 6%. However, as we scale to larger GPU counts, PCCL
begins to outperform NCCL–achieving a 7% speedup at 512 GPUs
and a significantly higher 20% speedup at 1024 GPUs. All of these re-
sults highlight PCCL’s ability to deliver performance improvements
for collective communication across multiple GPU architectures,
and more importantly, translate those gains into meaningful end-
to-end speedups for large-scale deep learning applications.

7 Related Work
Optimizing collective communication has been a long-standing
challenge in high-performance computing (HPC) and parallel com-
puting and has been the focus on extensive research. Thakur et
al.’s seminal work focuses on optimizing a plethora of collective
operations including all-gathers and reduce-scatters in MPICH [23].
The authors explore the design space of several algorithms for
each collective, and provide guidelines for selecting the most ap-
proporiate algorithm for different scenarios. In contrast, our work
focuses on large-scale deep learning workloads and with messages
sizes in the tens to hundreds of megabytes. Patarsuk et al. pro-
pose the bandwidth-optimized ring algorithm for all-reduce op-
erations [17]. Graham et al. develop optimize MPI collective to
effectively exploit shared memory on multi-core systems. Chan et
al. citechan2006simultaneouscollectives develop highly optimized
collectives for the IBM Blue Gene/L, exploiting unique properties
of the system [11]. Kandalla et al. develop a scalable multi-leader
hierarchical algorithm for all-gather [16]. Note that the focus of
these works is on optimizing the performance of collective commu-
nication in traditional HPC workloads with small message sizes,
and not on the large message sizes inherent to deep learning.

De Sensi et al. study the performance of NCCL, RCCL and Cray-
MPICH across various state of the art supercomputers across a
variety of latency and bandwidth bound scenarios [5]. Cho et al.

propose a mutli-level hierarchical ring algorithm for all-reduce
and study the tradeoff of bandwidth and latency between the flat
and hierarchical ring algorithms [3]. In this work, we build on this
and exploit more latency optimal algorithms like recursive dou-
bling/halving in the inter-node levels of the hierarchy and also
demonstrate how this design can be utlized to load-balance net-
work traffic across NICs. Note that similar hierarchical designs have
been explored in other works as well [13, 24]. Cai et al. develop
a systematic theoretical approach to synthesize novel communi-
cation algorithms for optimizing collective communication on a
particular topology [2]. Cho et al. develop a strategy to maximize
the overlap of a tree-based all-reduce with the computation in neu-
ral network training [4]. There is also a body of work focused on
exploiting data compression to minimize communication overheads
in distributed deep learning. For example, Feng et al. optimize all-to-
all communication in recommendation model training via a novel
error-bounded compression algorithm [8]. Huang et al. develop
hZCCL, a communication library that enables collective operations
on compressed data [14]. Zhou et al. develop a GPU-based compres-
sion scheme for all-gathers and reduce-scatters [28] and optimize
FSDP [27] training at scale.

8 Conclusion
In this work, we investigated the current state of collective commu-
nication libraries for parallel deep learning. Specifically, we focused
on the all-gather and reduce-scatter collectives, which find wide
usage in several distributed training frameworks, and comprise the
bulk of communication time in large scale training runs. We eval-
uated the performance of Cray-MPICH, RCCL, and NCCL, three
state-of-the-art-communication libraries on HPE Cray supercom-
puters, and highlighted shortcomings in their performance which
make then unsuitable for scaling. We then developed PCCL, a new
communication library with highly optimized implementations of
all-gather and reduce-scatter operations. PCCL leverages several
optimizations designed to alleviate the performance bottlenecks
of Cray-MPICH, RCCL and NCCL, highlighted in this work. We
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demonstrated significant performance improvements over all three
libraries, both in collective communication benchmarks as well as
end-to-end training benchmarks. PCCL achieves substantial per-
formance improvements, delivering 6–33× speedups over RCCL
and 28–70× over Cray-MPICH for all-gather on 2048 GCDs of Fron-
tier. These gains translate directly to end-to-end performance: in
large-scale GPT-3-style training, PCCL provides up to 60% and 40%
speedups over RCCL for 7B and 13B parameter models on Frontier,
respectively.
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