
Intro to Deep Learning
Abhinav Bhatele, Daniel Nichols

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Announcements
• Assignment 1 is out

• Due Feb. 25th at midnight

2

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Triton
• Calling functions from Triton kernels

• Shape specific hyperparameters

• Triton functions

• https://triton-lang.org/main/index.html

https://triton-lang.org/main/index.html

Abhinav Bhatele, Daniel Nichols (CMSC828G)

DL Models High Level Overview

model
dog
or

cat?

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Supervised Training Overview

dog

model cat

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Supervised Training Overview

cat

model cat

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Self-Supervised Training Overview

model

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Dense Neural Networks
• Linear models are not always enough

• Most real world problems are hierarchical and non-linear

• Neural networks add levels of non-linearity

• Each unit is an activation of a linear transformation

θ0,0

θ1,0θ2,0

θ0,1

θ1,1

θ2,1
θ0,2

θ1,2

θ2,2

θ0,3θ1,3

θ2,3

x0

x1

x2

σ(θ0
Tx)

σ(θ1
Tx)

σ(θ2
Tx)

σ(θ2
Tx)

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Layers

input layer 1 layer 2 …

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Layers

input layer 1 layer 2 …layer 3

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Gradient Descent
• Optimization algorithm for convex functions

• Also works well for neural networks

• Iteratively step in opposite direction of gradient

• Used to minimize prediction loss or error

• To minimize f(x):

https://www.cs.umd.edu/class/spring2025/cmsc828g/gradient-descent.shtml

https://www.cs.umd.edu/class/spring2025/cmsc828g/gradient-descent.shtml

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Backpropagation
• Algorithm used to compute gradients

• Uses chain rule and dynamic programming to remove redundant computations

f

exp

+

*

x y

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Backpropagation
• Algorithm used to compute gradients

• Uses chain rule and dynamic programming to remove redundant computations

f

exp

+

*

x y

z3

z2

z1

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Backpropagation
• Algorithm used to compute gradients

• Uses chain rule and dynamic programming to remove redundant computations

• Algorithm: f

exp

+

*

x y

compute grad of V
1. if cached grad(V), return grad(V)
2. loop through consumers c of V

2a. d = recursively compute grad of c
2b. Gc = use backprop to compute grad

of V wrt c
1. return sum of Gc

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Training Loop
running_loss = 0.
last_loss = 0.

for i, data in enumerate(training_loader):
 inputs, labels = data

 optimizer.zero_grad()

 outputs = model(inputs)

 loss = loss_fn(outputs, labels)
 loss.backward()

 optimizer.step()

 running_loss += loss.item()
 if i % print_every == print_every-1:
 last_loss = running_loss / print_every
 print(' batch {} loss: {}'.format(i + 1, last_loss))
 running_loss = 0.

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Training Loop
running_loss = 0.
last_loss = 0.

for i, data in enumerate(training_loader):
 inputs, labels = data

 optimizer.zero_grad()

 outputs = model(inputs)

 loss = loss_fn(outputs, labels)
 loss.backward()

 optimizer.step()

 running_loss += loss.item()
 if i % print_every == print_every-1:
 last_loss = running_loss / print_every
 print(' batch {} loss: {}'.format(i + 1, last_loss))
 running_loss = 0.

Each epoch loop through the
entire dataset

Prepare for gradient
computation

Forward pass

Loss Computation

Compute gradients

Update weights

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Training Loop: Bottlenecks
running_loss = 0.
last_loss = 0.

for i, data in enumerate(training_loader):
 inputs, labels = data

 optimizer.zero_grad()

 outputs = model(inputs)

 loss = loss_fn(outputs, labels)
 loss.backward()

 optimizer.step()

 running_loss += loss.item()
 if i % print_every == print_every-1:
 last_loss = running_loss / print_every
 print(' batch {} loss: {}'.format(i + 1, last_loss))
 running_loss = 0.

Getting data from disk to GPU

Forward pass

Backward pass

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Batching and Stochastic Gradient Descent
• Computing entire gradient is infeasible

• Estimate with sample mean using samples

• Use matrices for fully connected layers
• Batching allows us to trade-off accuracy and efficiency

• Larger batches provide more accurate gradient estimates

• Diminishing returns for larger batches with increasing compute requirements

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Momentum and Adam
• SGD is inefficient

• We can vary our step size using momentum

• Adam
• Use 1st and 2nd moments to further decide step size

https://www.cs.umd.edu/class/spring2025/cmsc828g/gradient-descent.shtml

https://www.cs.umd.edu/class/spring2025/cmsc828g/gradient-descent.shtml

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Optimizations: Activation Checkpointing
• Recompute values from forward pass to save memory

image: https://shivambharuka.medium.com/deep-learning-a-primer-on-distributed-training-part-1-d0ae0054bb1c

https://shivambharuka.medium.com/deep-learning-a-primer-on-distributed-training-part-1-d0ae0054bb1c

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Optimizations: Fusion
• Fuse subgraphs in the compute graph into faster operations

h

+

σ

matmul

X Θ

b

h

linear

X Θ b

Abhinav Bhatele, Daniel Nichols (CMSC828G)

PyTorch
• A machine learning Python framework

• Sophisticated autograd capabilities

• Supports many accelerator backends

• ML specific optimizations
• compiler

• kernels

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Tensors
• N-D arrays

• Usually created with torch.empty, torch.ones, torch.zeros, torch.rand

• Support most math operations

https://pytorch.org/tutorials/beginner/introyt/tensors_deeper_tutorial.html

ones = torch.zeros(2, 2) + 1

twos = torch.ones(2, 2) * 2

threes = (torch.ones(2, 2) * 7 - 1) / 2

fours = twos ** 2

sqrt2s = twos ** 0.5

https://pytorch.org/tutorials/beginner/introyt/tensors_deeper_tutorial.html

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Tensors
• N-D arrays

• Usually created with torch.empty, torch.ones, torch.zeros, torch.rand

• Support most math operations

• Support broadcasting

https://pytorch.org/tutorials/beginner/introyt/tensors_deeper_tutorial.html

rand = torch.rand(2, 4)

doubled = rand * (torch.ones(1, 4) * 2)

https://pytorch.org/tutorials/beginner/introyt/tensors_deeper_tutorial.html
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/generated/torch.rand.html#torch.rand
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/generated/torch.ones.html#torch.ones

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Tensors
• N-D arrays

• Usually created with torch.empty, torch.ones, torch.zeros, torch.rand

• Support most math operations

• Support broadcasting

• Can be stored on CPU or GPU

https://pytorch.org/tutorials/beginner/introyt/tensors_deeper_tutorial.html

y = torch.rand(2, 2)

y = y.to(my_device)

y = torch.rand(2, 2, device='cuda')

https://pytorch.org/tutorials/beginner/introyt/tensors_deeper_tutorial.html

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Operations and Compute Graph
• The graph is automatically managed in

PyTorch

• Most typical numpy and math operations

are supported

• https://pytorch.org/docs/stable/torch.html

https://pytorch.org/docs/stable/torch.html

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Computing Gradients
• Tensors must have .requires_grad = True

• .backward() computes gradients

x = torch.ones(5)

y = torch.zeros(3)

w = torch.randn(5, 3, requires_grad=True)

b = torch.randn(3, requires_grad=True)

z = torch.matmul(x, w)+b

loss = torch.nn.functional.binary_cross_entropy_with_logits(z, y)

loss.backward()

print(w.grad)

print(b.grad)

Tell torch we need gradients for
these tensors

Compute the gradients

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Graph Neural Networks
3 pieces of data: node
values, edge values,

adjacency information

Several learning tasks:
node-level, edge-level,

graph-level

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Graph Neural Networks

f

f
f

f

We can use a neural
network to simply model

node features

+
Global pooling can be used

for graph level tasks

Message passing is used to learn
from graph relational structure

