

Intro to Deep Learning

Abhinav Bhatele, Daniel Nichols

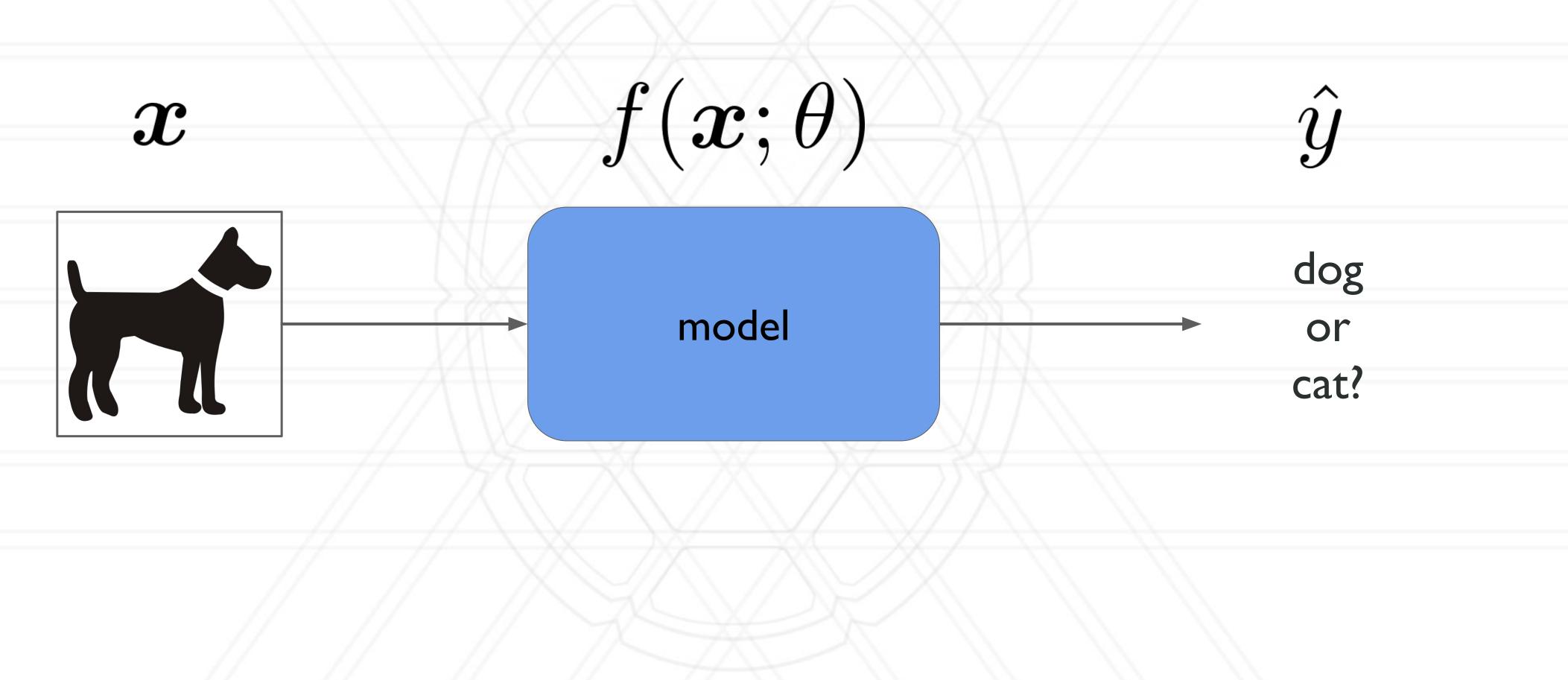
Announcements

- Assignment I is out
 - Due Feb. 25th at midnight

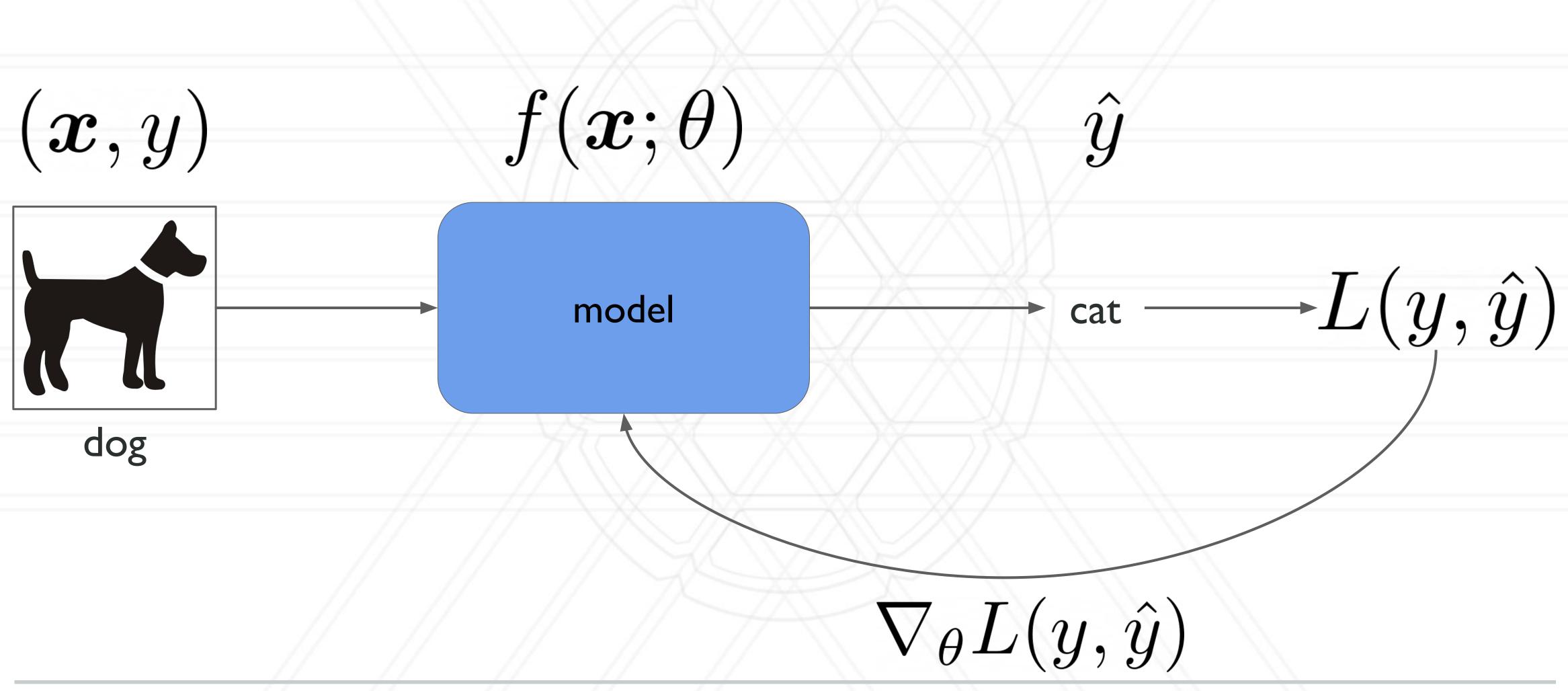
Triton

- Calling functions from Triton kernels
- Shape specific hyperparameters
- Triton functions
- <u>https://triton-lang.org/main/index.html</u>

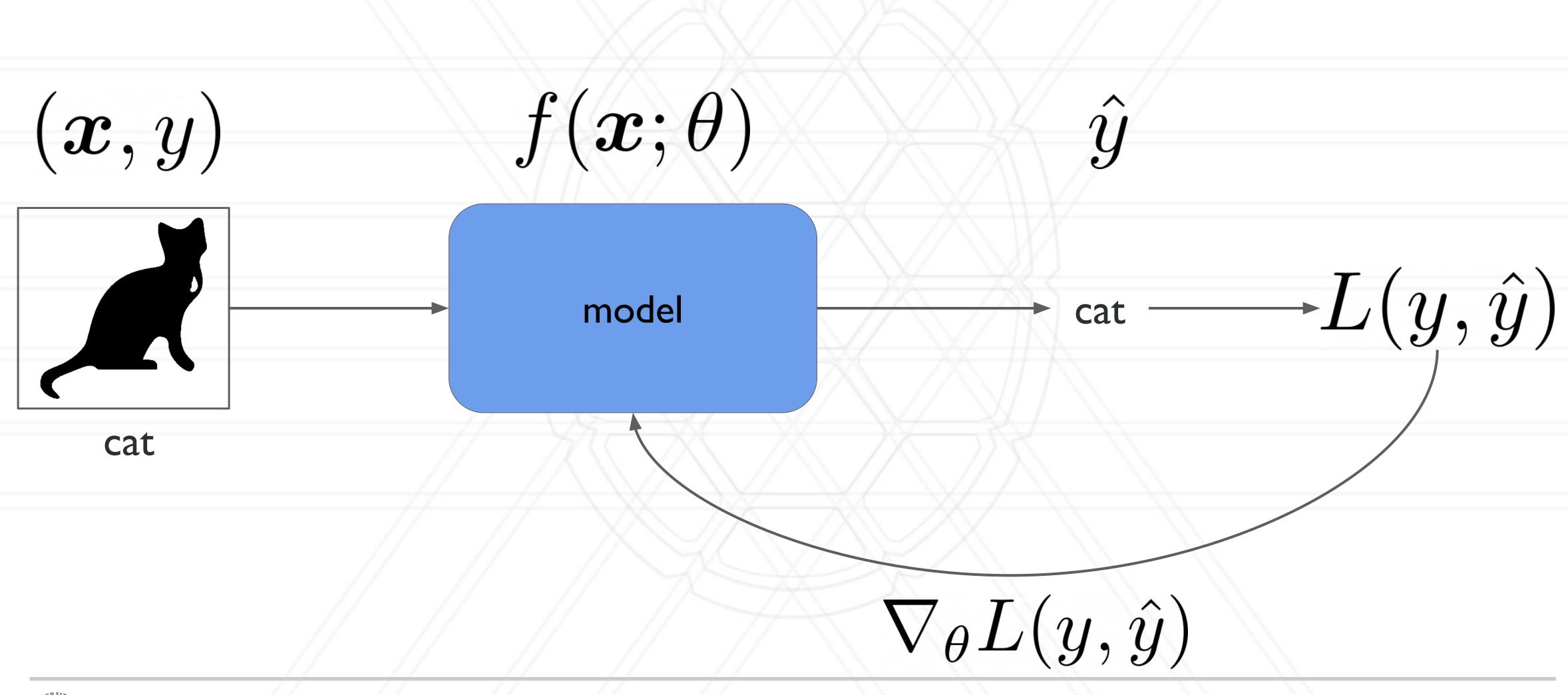
DL Models High Level Overview



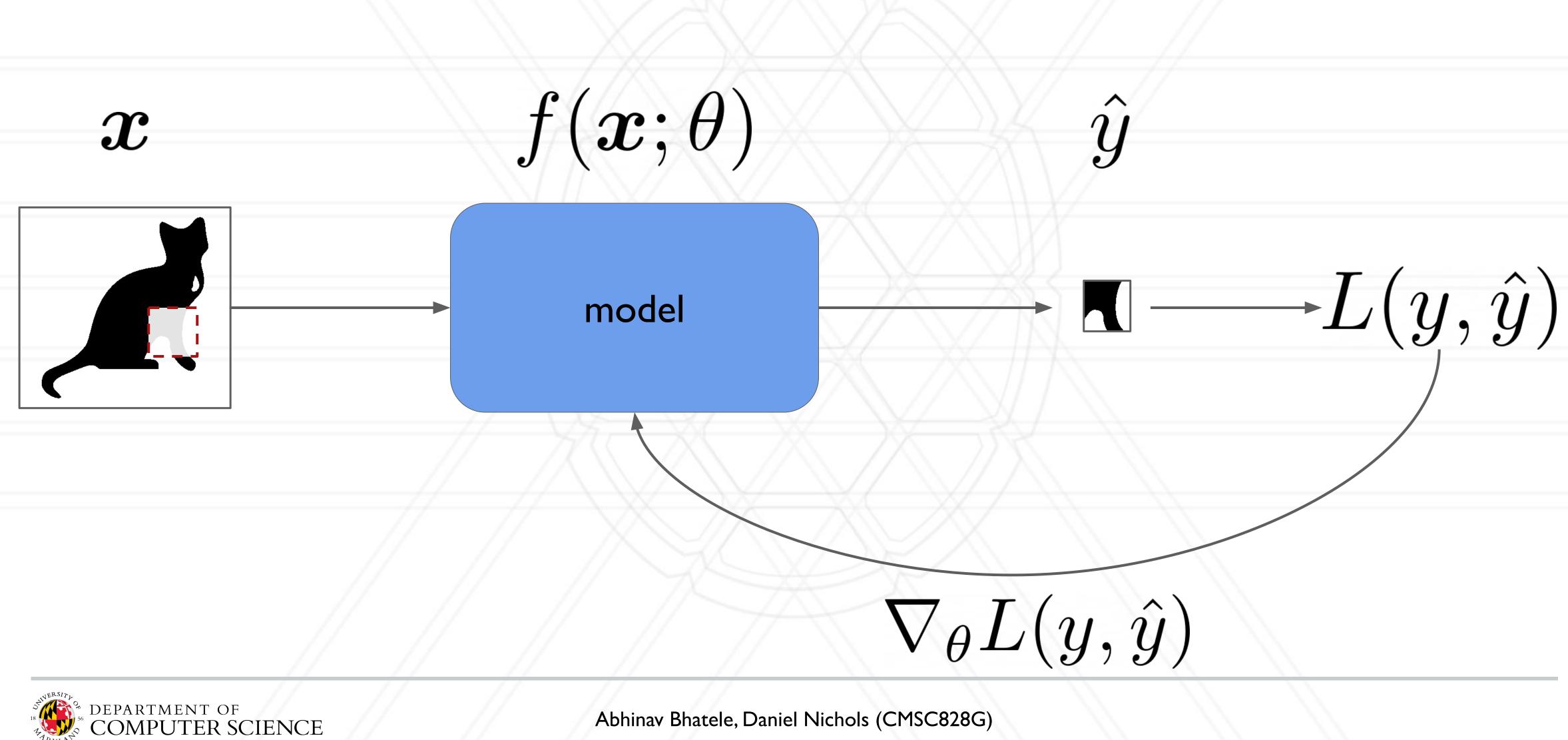
Supervised Training Overview



Supervised Training Overview



Self-Supervised Training Overview

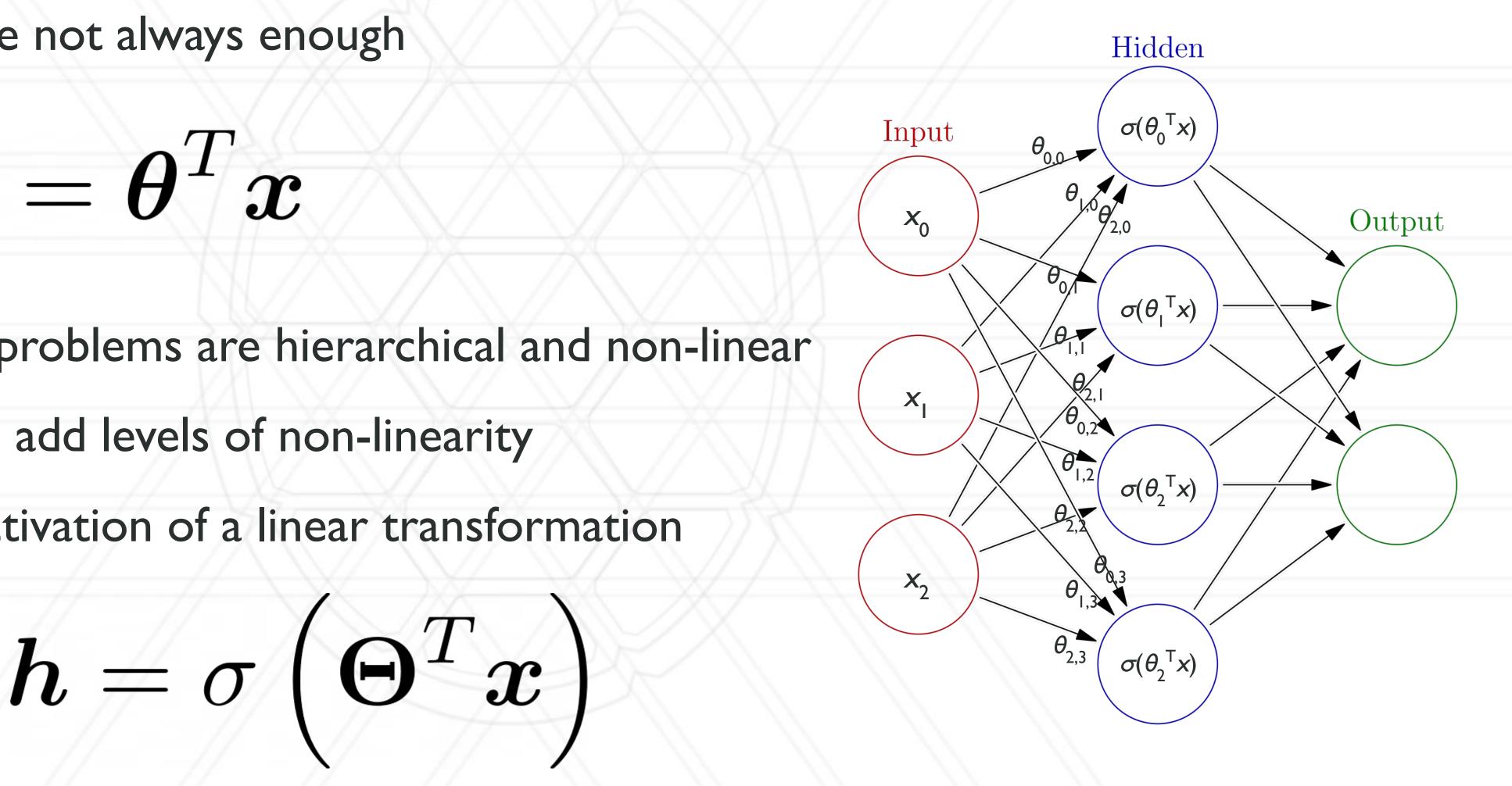


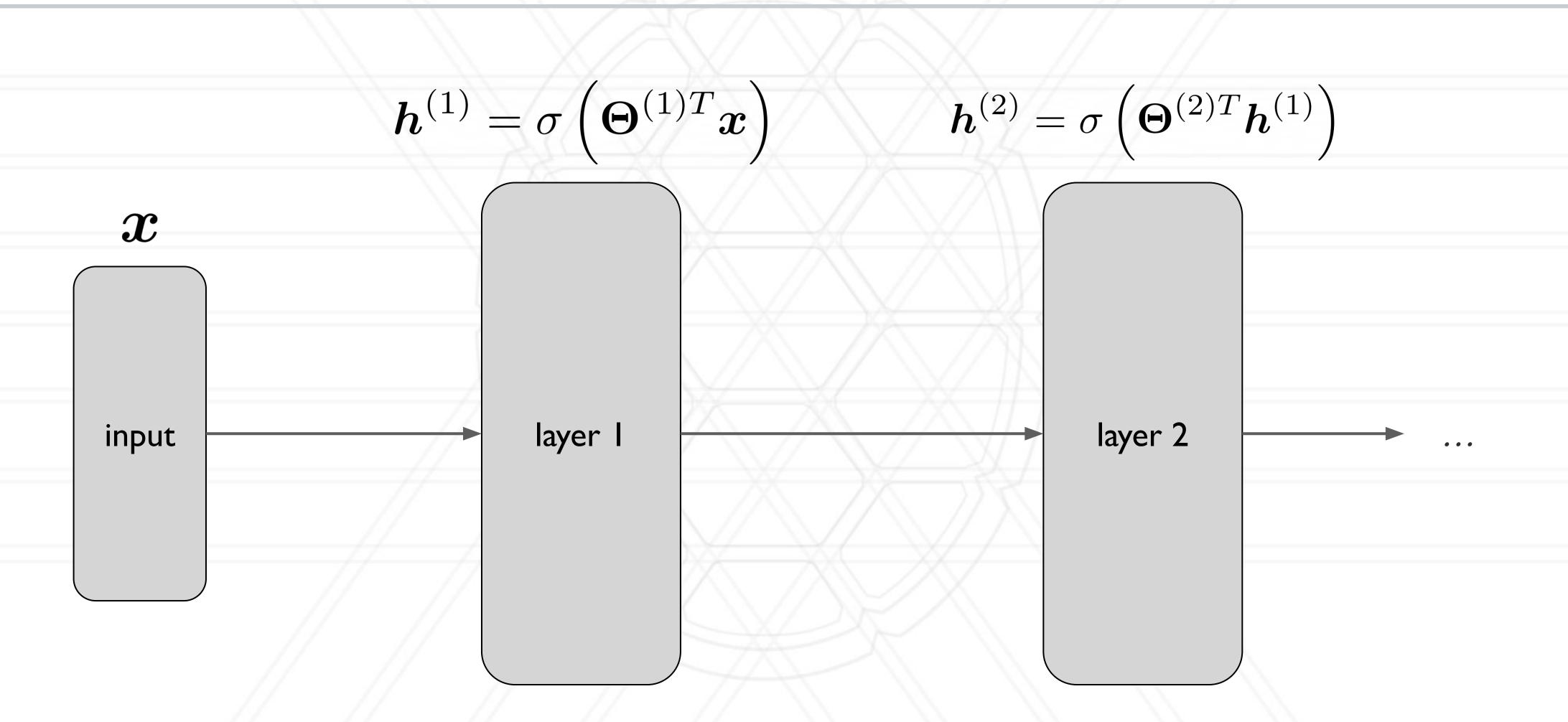
Dense Neural Networks

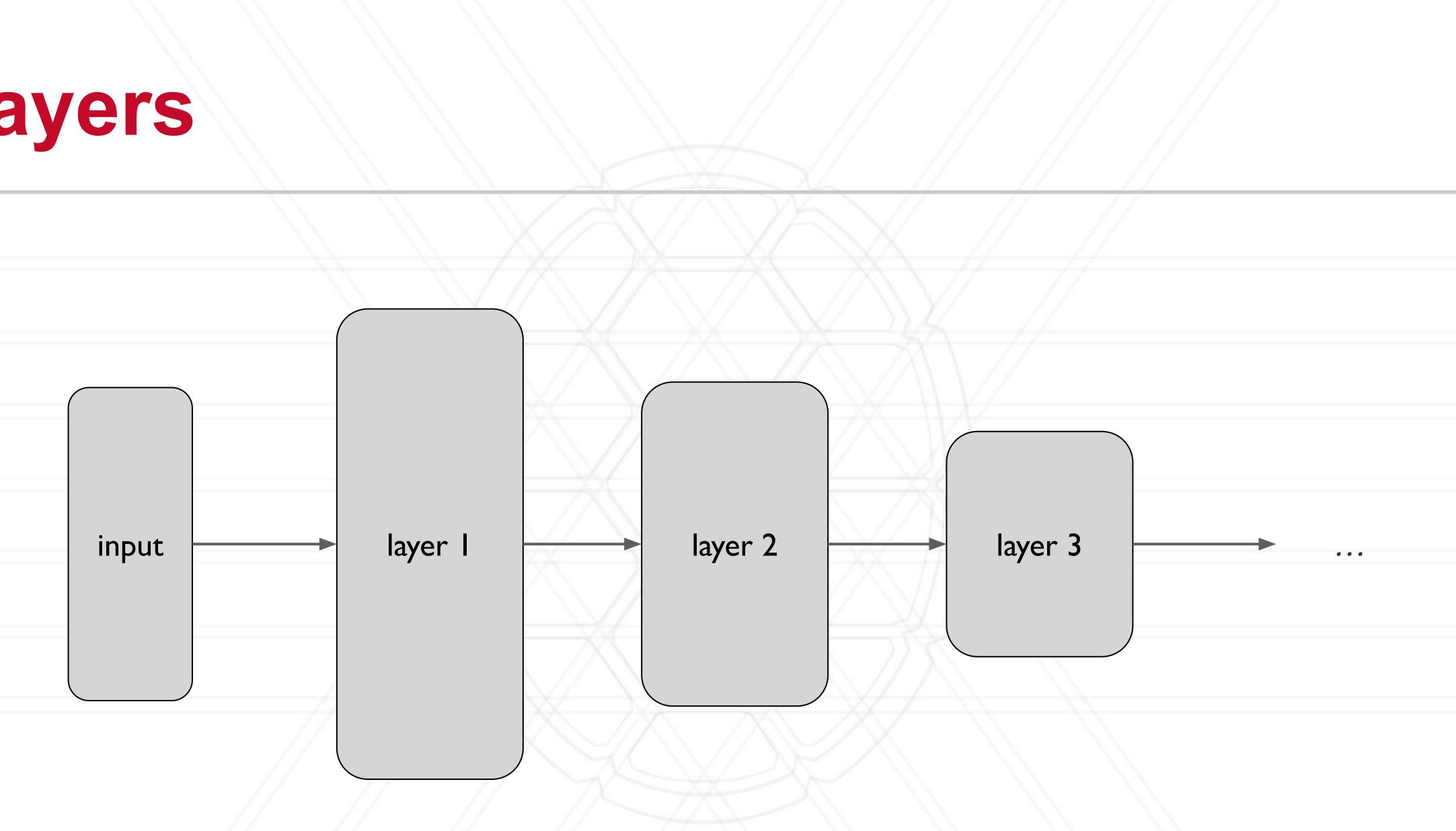
Linear models are not always enough

$$f(\boldsymbol{x};\boldsymbol{ heta}) = \boldsymbol{ heta}^T \boldsymbol{x}$$

- Most real world problems are hierarchical and non-linear
- Neural networks add levels of non-linearity
- Each unit is an activation of a linear transformation







Gradient Descent

- Optimization algorithm for convex func
- Also works well for neural networks
- Iteratively step in opposite direction of
- Used to minimize prediction loss or err
- To minimize f(x):

Abhinav Bhatele, Daniel Nichols (CMSC828G)

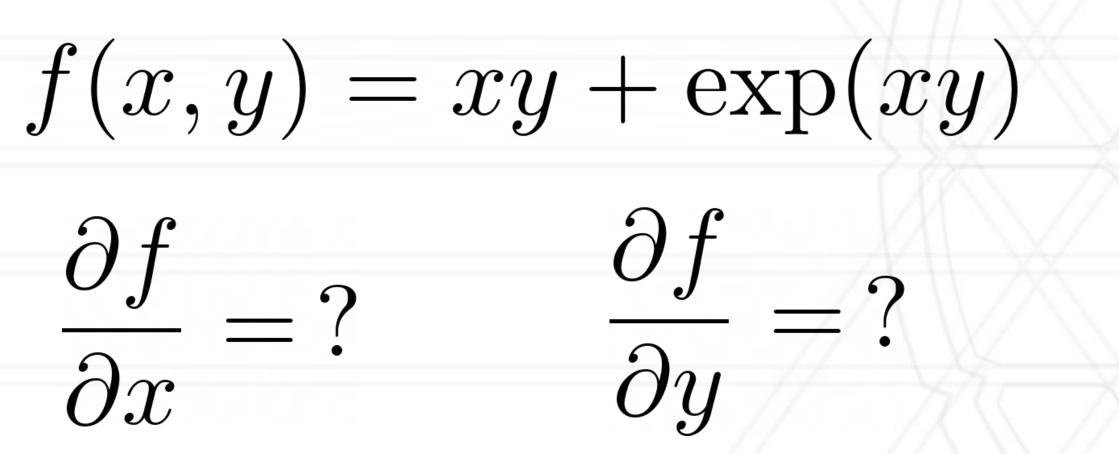
tions			
gradient			
ror			
	XIII		

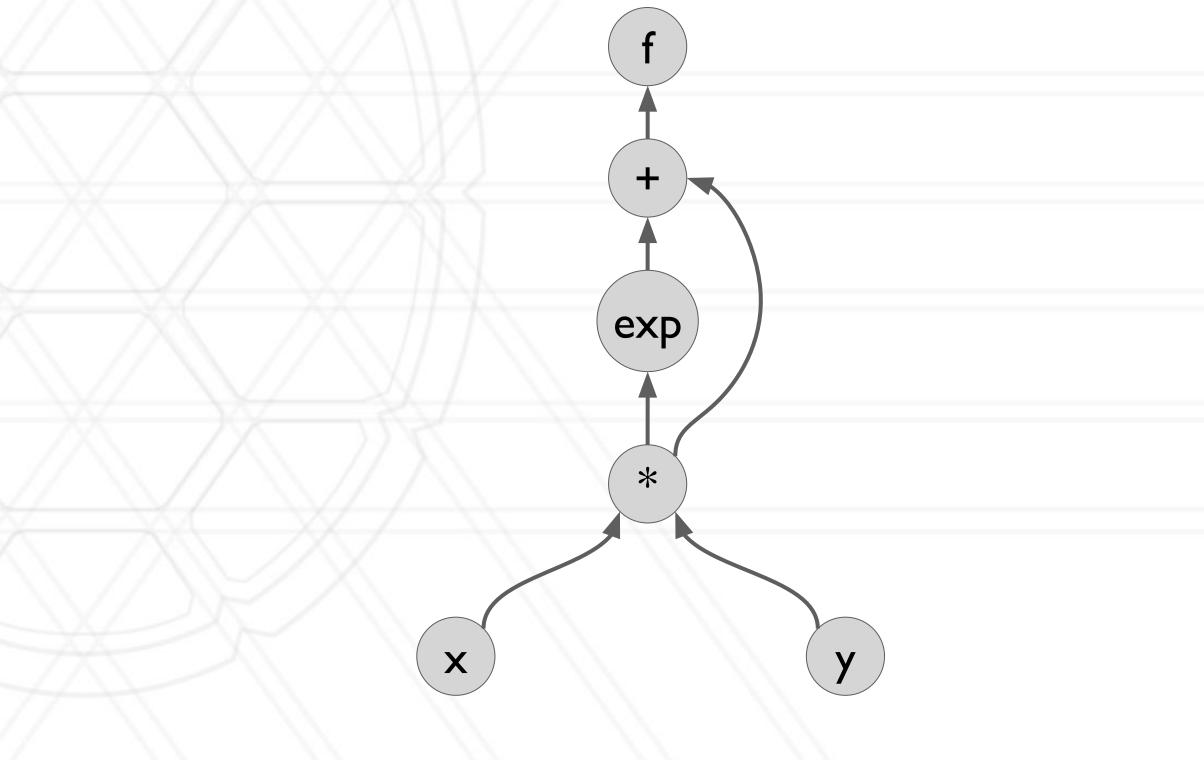
 $x_{n+1} = x_n - \eta \nabla_x f(x_n)$

https://www.cs.umd.edu/class/spring2025/cmsc828g/gradient-descent.shtml

Backpropagation

- Algorithm used to compute gradients
- Uses chain rule and dynamic programming to remove redundant computations

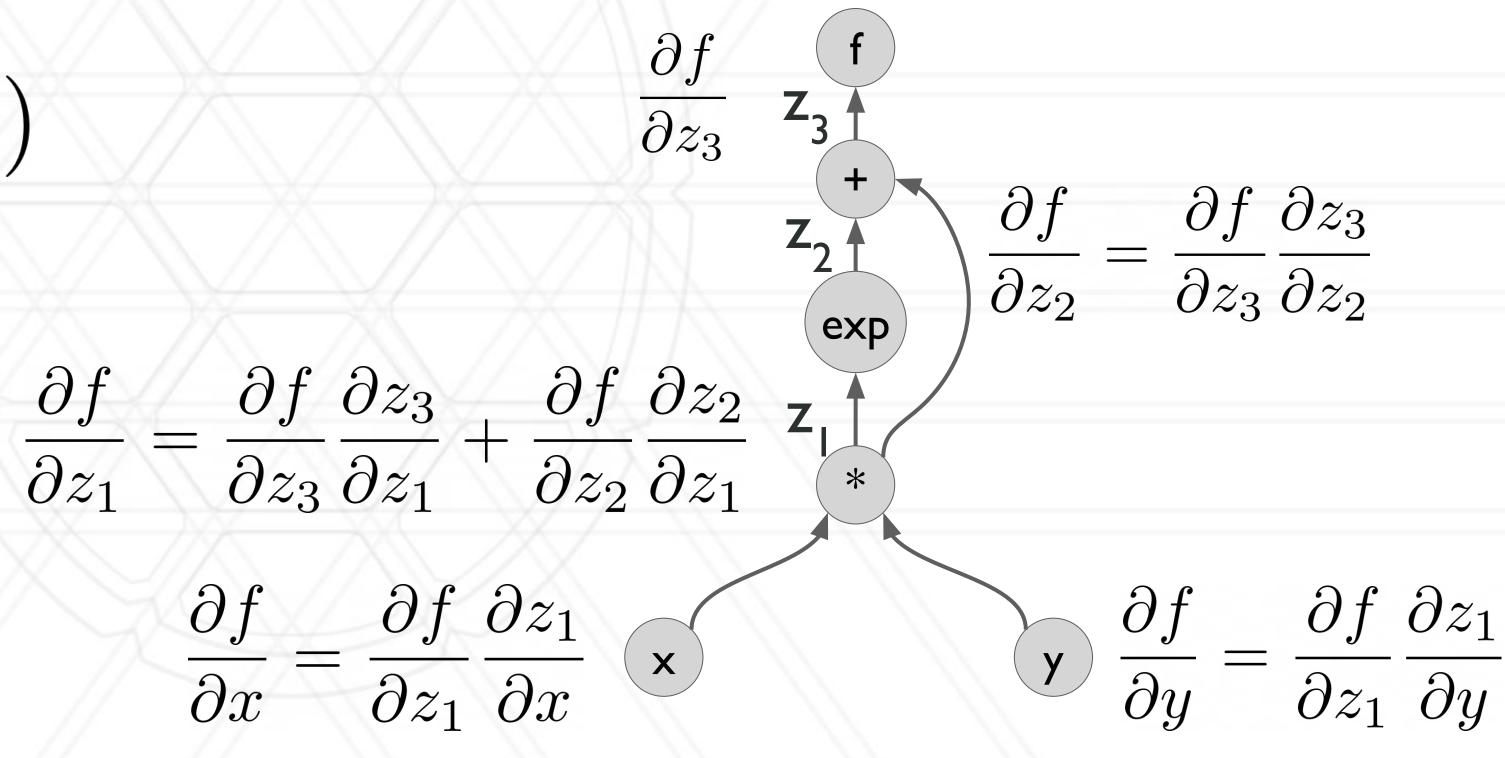




Backpropagation

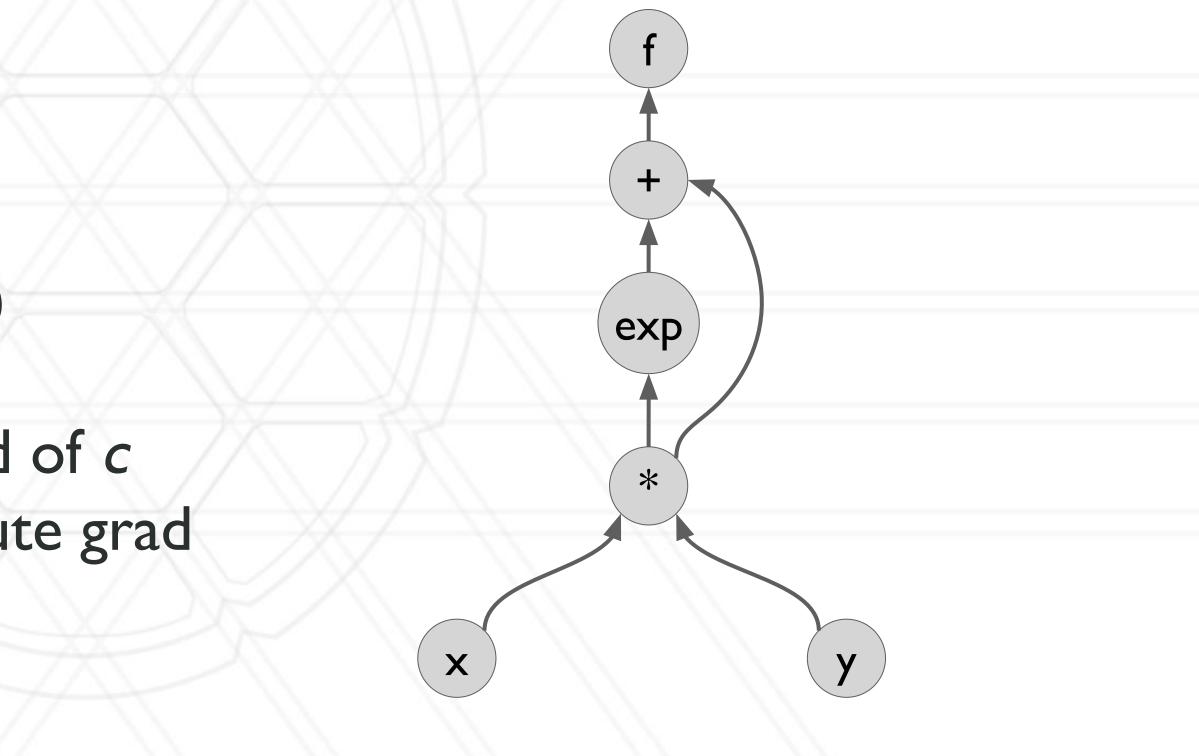
- Algorithm used to compute gradients
- Uses chain rule and dynamic programming to remove redundant computations

 $f(x, y) = xy + \exp(xy)$ $rac{\partial f}{\partial x}$



Backpropagation

- Algorithm used to compute gradients
- Uses chain rule and dynamic programming to remove redundant computations
- Algorithm:
 - compute grad of V I. if cached grad(V), return grad(V) 2. loop through consumers c of V2a. d = recursively compute grad of c2b. G_{c} = use backprop to compute grad of V wrt c I. return sum of G



Training Loop

running_loss = 0. last loss = 0.

for i, data in enumerate(training_loader): inputs, labels = data

optimizer.zero_grad()

outputs = model(inputs)

```
loss = loss_fn(outputs, labels)
loss.backward()
```

optimizer.step()

```
running_loss += loss.item()
if i % print every == print every-1:
    last_loss = running_loss / print_every
    print(' batch {} loss: {}'.format(i + 1, last_loss))
    running_loss = 0.
```


Training Loop

running_loss = 0. last loss = 0.

for i, data in enumerate(training_loader): inputs, labels = data

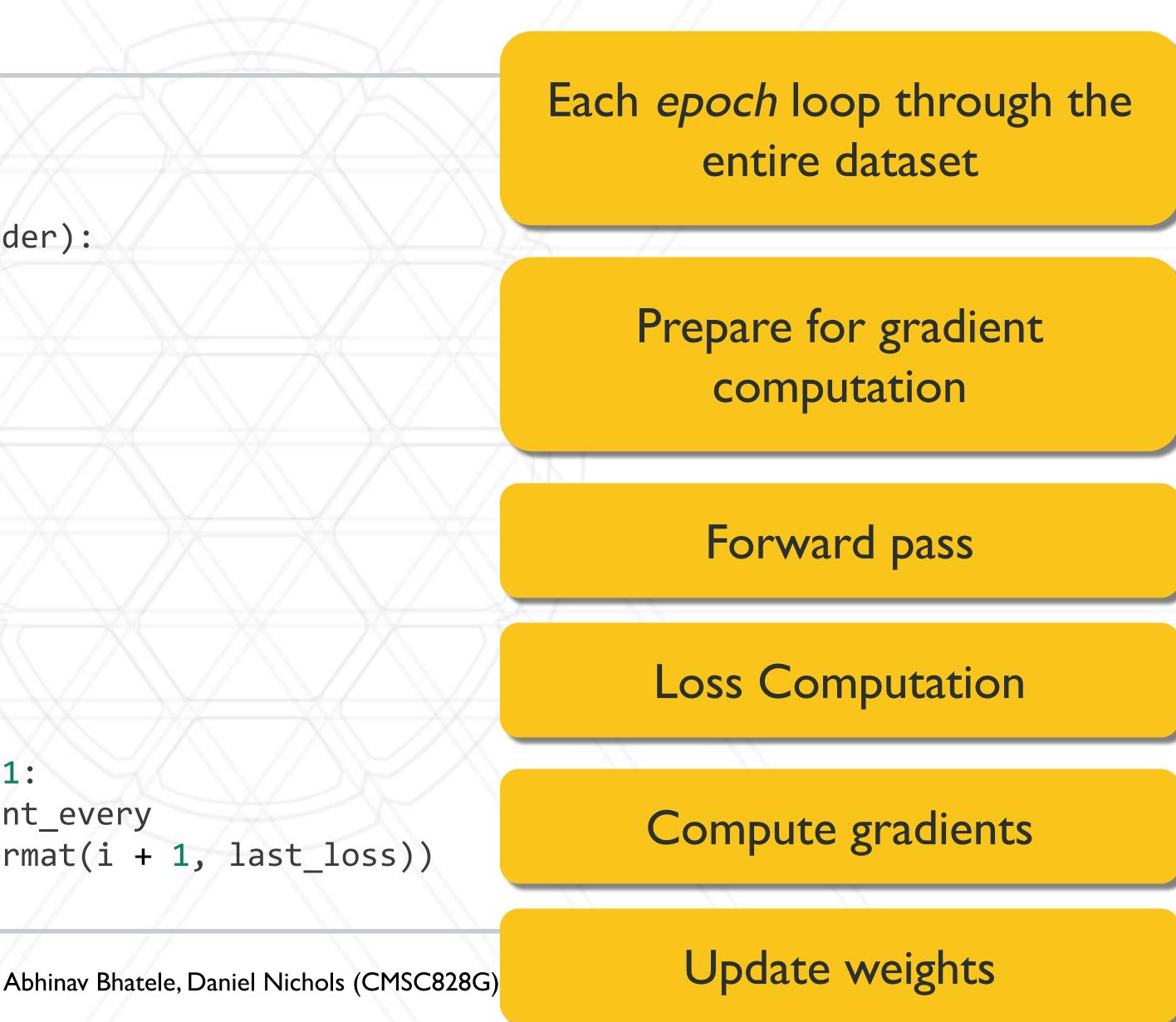
optimizer.zero_grad()

outputs = model(inputs)

```
loss = loss_fn(outputs, labels)
loss.backward()
```

optimizer.step()

```
running_loss += loss.item()
if i % print_every == print_every-1:
    last_loss = running_loss / print_every
    print(' batch {} loss: {}'.format(i + 1, last_loss))
    running_loss = 0.
```

Training Loop: Bottlenecks

running_loss = 0. last loss = 0.

for i, data in enumerate(training_loader): inputs, labels = data

optimizer.zero_grad()

outputs = model(inputs)

```
loss = loss_fn(outputs, labels)
loss.backward()
```

optimizer.step()

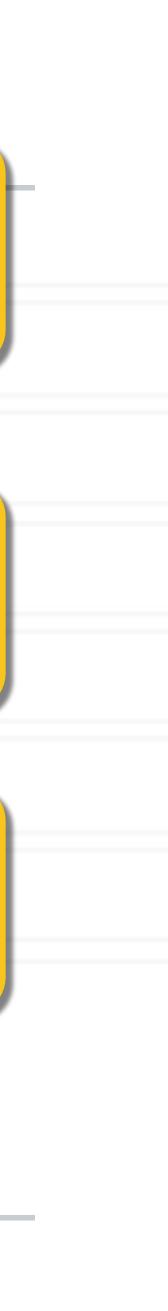
```
running_loss += loss.item()
if i % print_every == print_every-1:
    last_loss = running_loss / print_every
    print(' batch {} loss: {}'.format(i + 1, last_loss))
    running_loss = 0.
```

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Getting data from disk to GPU

Forward pass

Backward pass



Batching and Stochastic Gradient Descent

- Computing entire gradient is infeasible
 - Estimate with sample mean using samples
- Use matrices for fully connected layers
- Batching allows us to trade-off accuracy and efficiency
 - Larger batches provide more accurate gradient estimates
 - Diminishing returns for larger batches with increasing compute requirements

$h^{(l)} = \sigma (X\Theta)$

Momentum and Adam

- SGD is inefficient
 - We can vary our step size using momentum

 $\boldsymbol{v}_{n+1} = \alpha \boldsymbol{v}_n - \eta \nabla f(\boldsymbol{x}_n)$

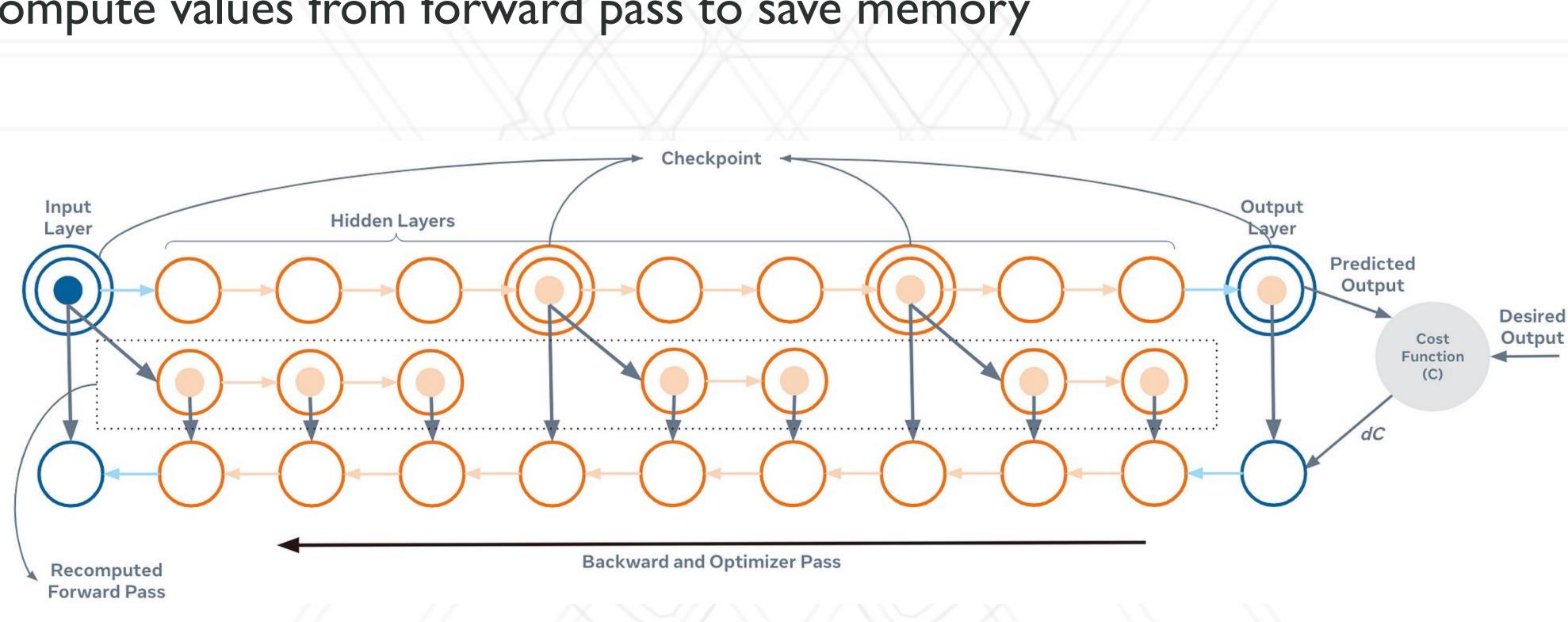
- Adam
 - Use Ist and 2nd moments to further decide step size

https://www.cs.umd.edu/class/spring2025/cmsc828g/gradient-descent.shtml

 $\boldsymbol{x}_{n+1} = \boldsymbol{x}_n - \boldsymbol{v}_n$

Optimizations: Activation Checkpointing

Recompute values from forward pass to save memory

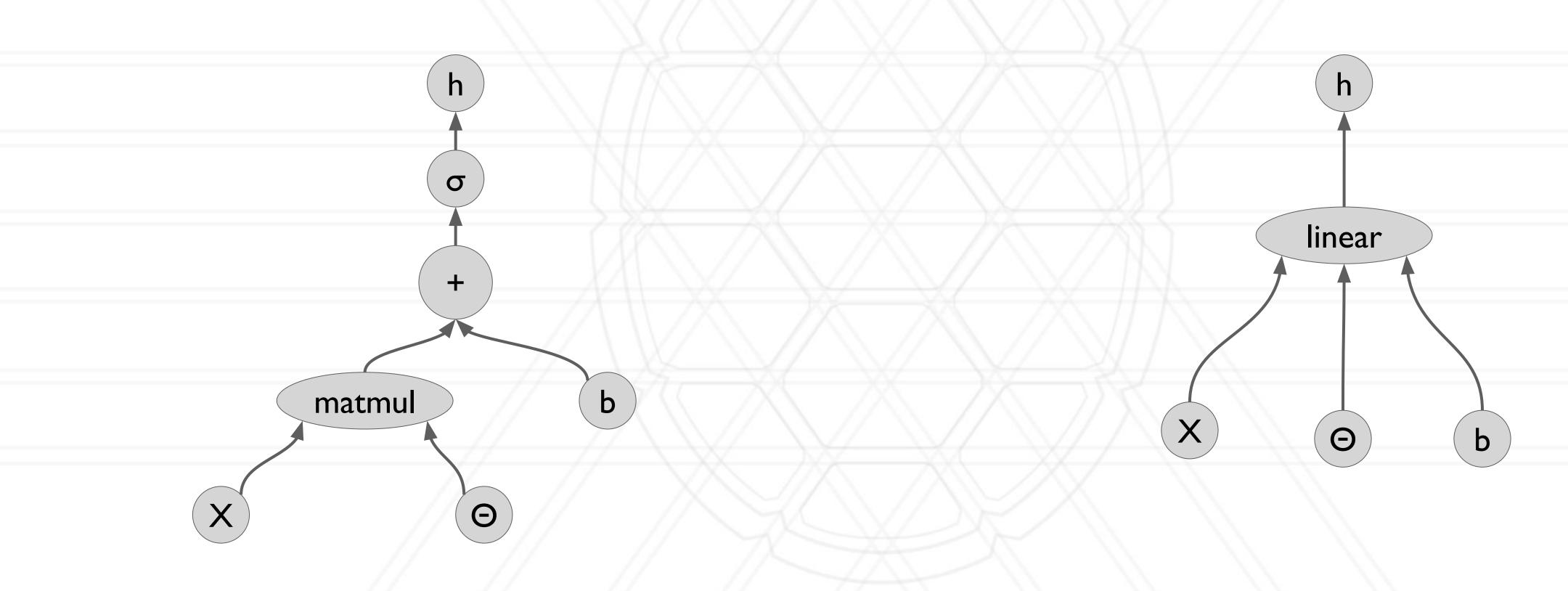


Abhinav Bhatele, Daniel Nichols (CMSC828G)

image: <u>https://shivambharuka.medium.com/deep-learning-a-primer-on-distributed-training-part-1-d0ae0054bb1c</u>

Optimizations: Fusion

• Fuse subgraphs in the compute graph into faster operations



PyTorch

- A machine learning Python framework
- Sophisticated autograd capabilities
- Supports many accelerator backends
- ML specific optimizations
 - compiler
 - kernels

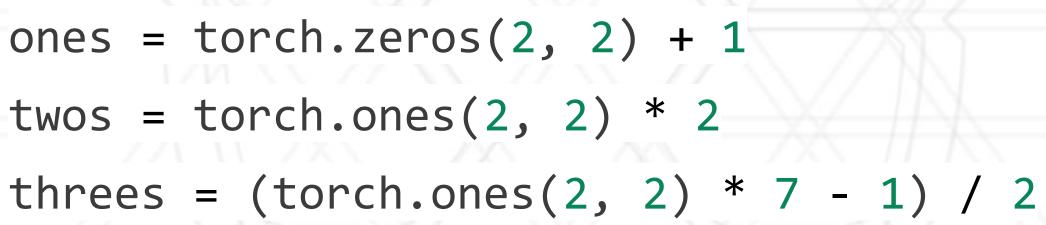
O PyTorch

Tensors

- N-D arrays
- Usually created with torch.empty, torch.ones, torch.zeros, torch.rand
- Support most math operations

ones = torch.zeros(2, 2) + 1twos = torch.ones(2, 2) * 2fours = twos ** 2 sqrt2s = twos ** 0.5

https://pytorch.org/tutorials/beginner/introyt/tensors_deeper_tutorial.html



Tensors

- N-D arrays
- Usually created with torch.empty, torch.ones, torch.zeros, torch.rand
- Support most math operations
- Support broadcasting

rand = torch.rand(2, 4)

doubled = rand * (torch.ones(1, 4) * 2)

https://pytorch.org/tutorials/beginner/introyt/tensors_deeper_tutorial.html

² DEPARTMENT OF COMPUTER SCIENCE

Tensors

- N-D arrays
- Usually created with torch.empty, torch.ones, torch.zeros, torch.rand
- Support most math operations
- Support broadcasting
- Can be stored on CPU or GPU
 - y = torch.rand(2, 2)

y = y.to(my_device)

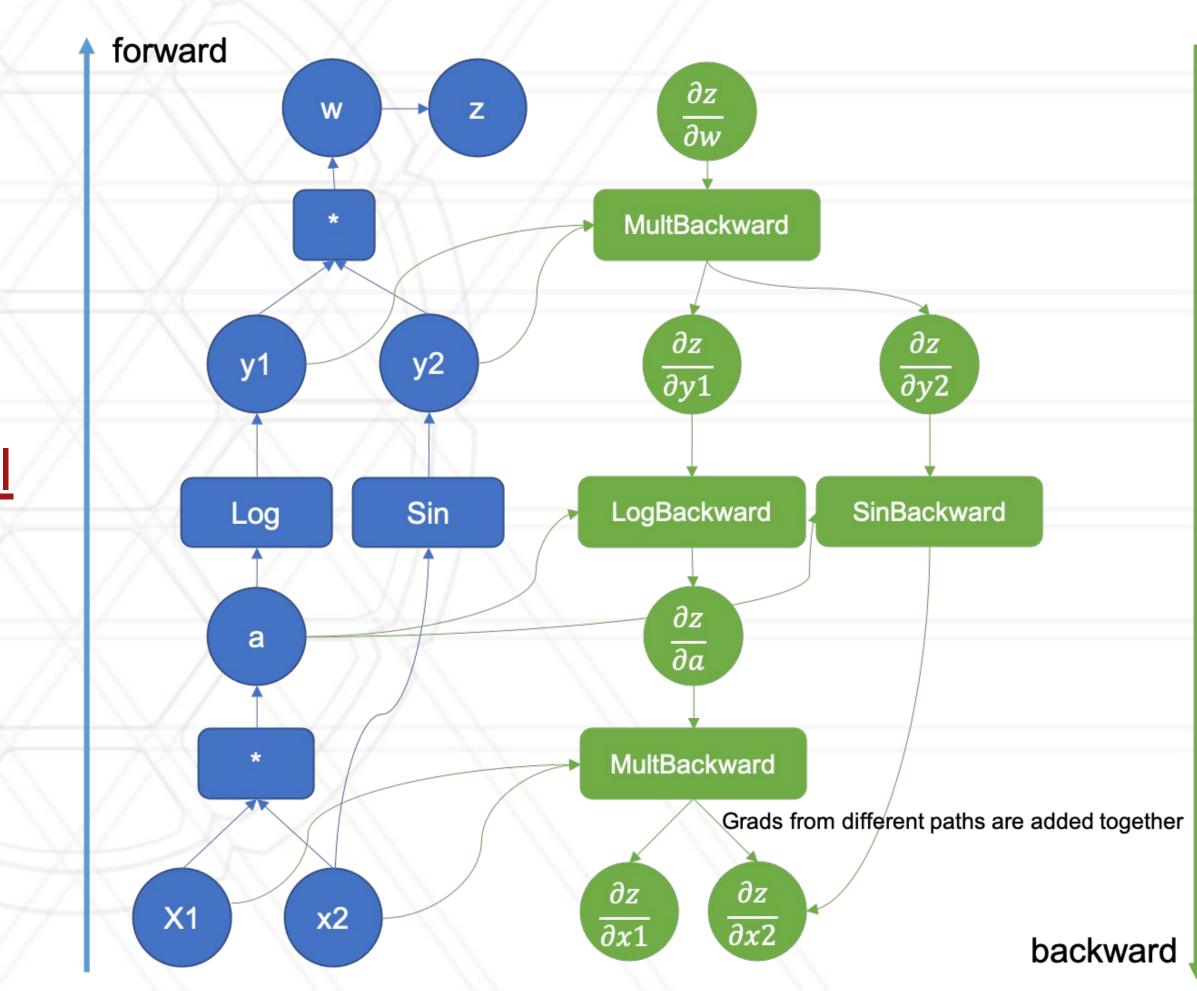
y = torch.rand(2, 2, device='cuda')

Abhinav Bhatele, Daniel Nichols (CMSC828G)

https://pytorch.org/tutorials/beginner/introyt/tensors deeper tutorial.html

Operations and Compute Graph

- The graph is automatically managed in PyTorch
- Most typical numpy and math operations are supported
- <u>https://pytorch.org/docs/stable/torch.html</u>



	I			
_				
_				
_				
	I			

Computing Gradients

- Tensors must have .requires grad = True
- .backward() computes gradients
 - x = torch.ones(5)
 - y = torch.zeros(3)
 - w = torch.randn(5, 3, requires_grad=True)
 - b = torch.randn(3, requires_grad=True)
 - z = torch.matmul(x, w)+b

loss = torch.nn.functional.binary_cross_entropy_with_logits(z, y)

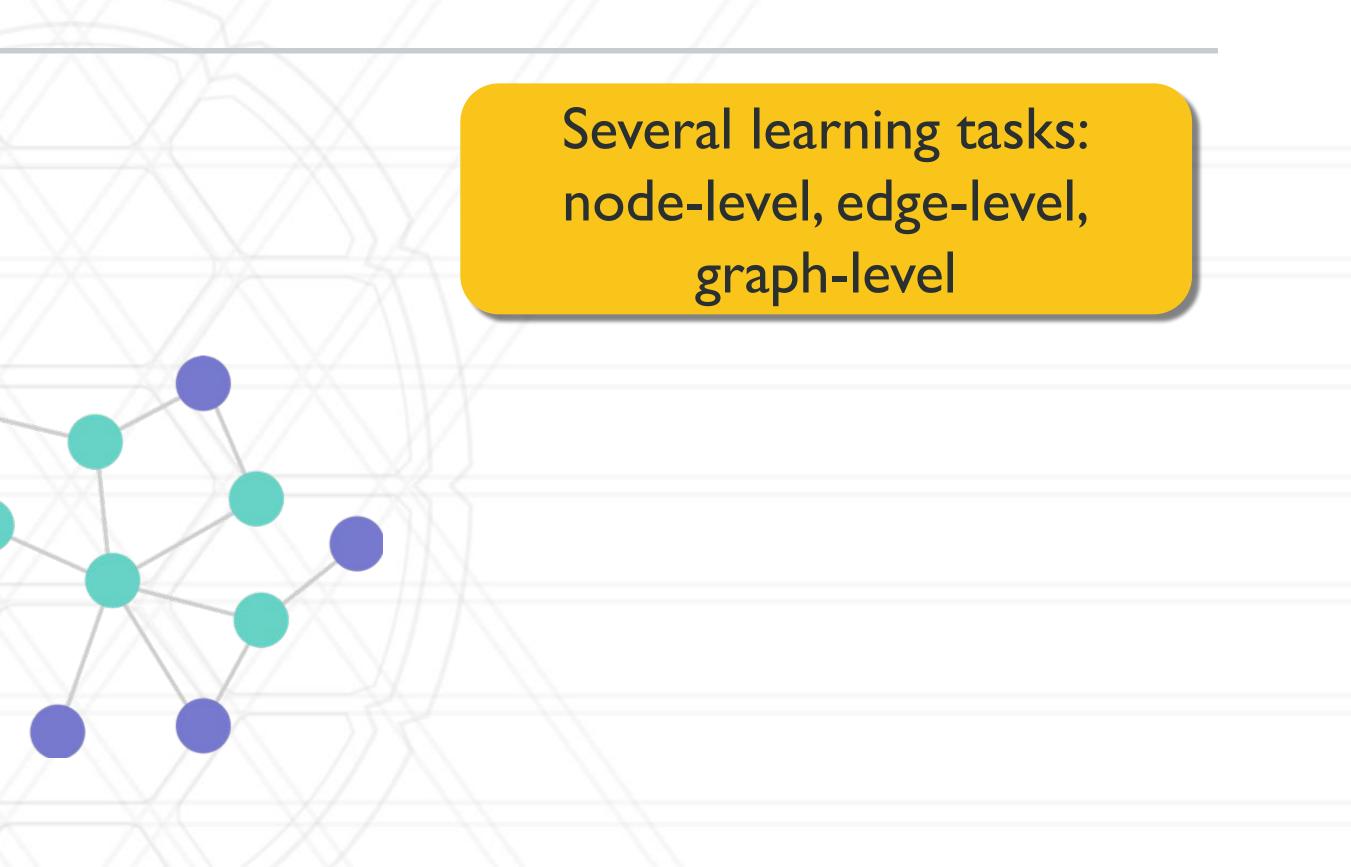
loss.backward() print(w.grad) print(b.grad)

Compute the gradients

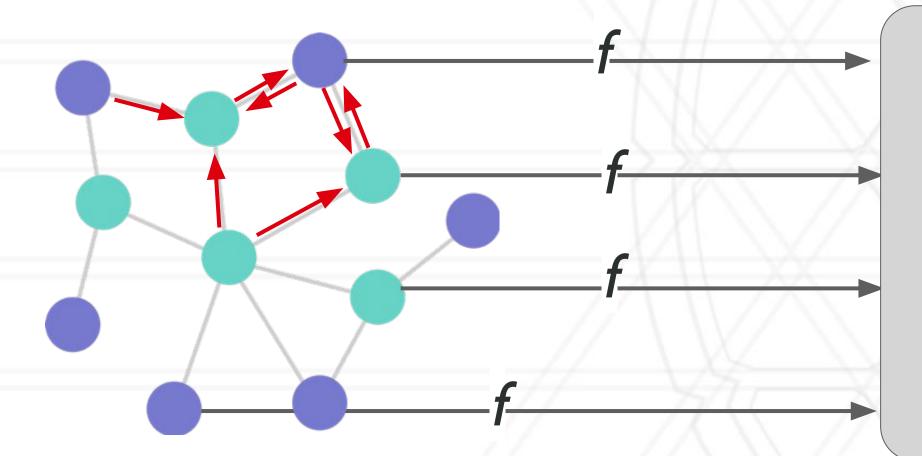
Tell torch we need gradients for these tensors

Graph Neural Networks

3 pieces of data: node values, edge values, adjacency information



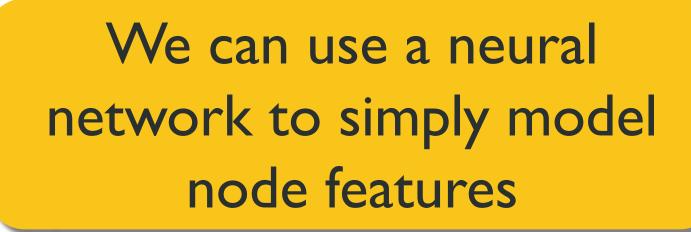
Graph Neural Networks



Message passing is used to learn from graph relational structure

Abhinav Bhatele, Daniel Nichols (CMSC828G)

+



Global pooling can be used for graph level tasks

UNIVERSITY OF MARYLAND