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Announcements
• Assignment 1 is out

• Due Feb. 25th at midnight
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Triton
• Calling functions from Triton kernels

• Shape specific hyperparameters

• Triton functions

• https://triton-lang.org/main/index.html 

https://triton-lang.org/main/index.html
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DL Models High Level Overview
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Supervised Training Overview 
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Supervised Training Overview 
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Self-Supervised Training Overview 

model
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Dense Neural Networks
• Linear models are not always enough

• Most real world problems are hierarchical and non-linear

• Neural networks add levels of non-linearity

• Each unit is an activation of a linear transformation
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Layers

input layer 1 layer 2 …
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Layers

input layer 1 layer 2 …layer 3
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Gradient Descent
• Optimization algorithm for convex functions

• Also works well for neural networks

• Iteratively step in opposite direction of gradient

• Used to minimize prediction loss or error

• To minimize f(x):

https://www.cs.umd.edu/class/spring2025/cmsc828g/gradient-descent.shtml 

https://www.cs.umd.edu/class/spring2025/cmsc828g/gradient-descent.shtml
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Backpropagation
• Algorithm used to compute gradients

• Uses chain rule and dynamic programming to remove redundant computations
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Backpropagation
• Algorithm used to compute gradients

• Uses chain rule and dynamic programming to remove redundant computations
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Backpropagation
• Algorithm used to compute gradients

• Uses chain rule and dynamic programming to remove redundant computations

• Algorithm: f

exp

+

*

x y

compute grad of V
1. if cached grad(V), return grad(V)
2. loop through consumers c of V

2a. d = recursively compute grad of c
2b. Gc = use backprop to compute grad 

of V wrt c
1. return sum of Gc 
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Training Loop
running_loss = 0.
last_loss = 0.

for i, data in enumerate(training_loader):
   inputs, labels = data

   optimizer.zero_grad()

   outputs = model(inputs)

   loss = loss_fn(outputs, labels)
   loss.backward()

   optimizer.step()

   running_loss += loss.item()
   if i % print_every == print_every-1:
       last_loss = running_loss / print_every
       print('  batch {} loss: {}'.format(i + 1, last_loss))
       running_loss = 0.
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Training Loop
running_loss = 0.
last_loss = 0.

for i, data in enumerate(training_loader):
   inputs, labels = data

   optimizer.zero_grad()

   outputs = model(inputs)

   loss = loss_fn(outputs, labels)
   loss.backward()

   optimizer.step()

   running_loss += loss.item()
   if i % print_every == print_every-1:
       last_loss = running_loss / print_every
       print('  batch {} loss: {}'.format(i + 1, last_loss))
       running_loss = 0.

Each epoch loop through the 
entire dataset

Prepare for gradient 
computation

Forward pass

Loss Computation

Compute gradients

Update weights
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Training Loop: Bottlenecks
running_loss = 0.
last_loss = 0.

for i, data in enumerate(training_loader):
   inputs, labels = data

   optimizer.zero_grad()

   outputs = model(inputs)

   loss = loss_fn(outputs, labels)
   loss.backward()

   optimizer.step()

   running_loss += loss.item()
   if i % print_every == print_every-1:
       last_loss = running_loss / print_every
       print('  batch {} loss: {}'.format(i + 1, last_loss))
       running_loss = 0.

Getting data from disk to GPU

Forward pass

Backward pass



Abhinav Bhatele, Daniel Nichols (CMSC828G)

Batching and Stochastic Gradient Descent
• Computing entire gradient is infeasible

• Estimate with sample mean using samples

• Use matrices for fully connected layers
• Batching allows us to trade-off accuracy and efficiency

• Larger batches provide more accurate gradient estimates

• Diminishing returns for larger batches with increasing compute requirements



Abhinav Bhatele, Daniel Nichols (CMSC828G)

Momentum and Adam
• SGD is inefficient

• We can vary our step size using momentum

• Adam
• Use 1st and 2nd moments to further decide step size

https://www.cs.umd.edu/class/spring2025/cmsc828g/gradient-descent.shtml 

https://www.cs.umd.edu/class/spring2025/cmsc828g/gradient-descent.shtml


Abhinav Bhatele, Daniel Nichols (CMSC828G)

Optimizations: Activation Checkpointing
• Recompute values from forward pass to save memory

image: https://shivambharuka.medium.com/deep-learning-a-primer-on-distributed-training-part-1-d0ae0054bb1c 

https://shivambharuka.medium.com/deep-learning-a-primer-on-distributed-training-part-1-d0ae0054bb1c
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Optimizations: Fusion
• Fuse subgraphs in the compute graph into faster operations
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PyTorch
• A machine learning Python framework

• Sophisticated autograd capabilities

• Supports many accelerator backends

• ML specific optimizations
• compiler

• kernels
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Tensors
• N-D arrays

• Usually created with torch.empty, torch.ones, torch.zeros, torch.rand

• Support most math operations

https://pytorch.org/tutorials/beginner/introyt/tensors_deeper_tutorial.html 

ones = torch.zeros(2, 2) + 1

twos = torch.ones(2, 2) * 2

threes = (torch.ones(2, 2) * 7 - 1) / 2

fours = twos ** 2

sqrt2s = twos ** 0.5

https://pytorch.org/tutorials/beginner/introyt/tensors_deeper_tutorial.html
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Tensors
• N-D arrays

• Usually created with torch.empty, torch.ones, torch.zeros, torch.rand

• Support most math operations

• Support broadcasting

https://pytorch.org/tutorials/beginner/introyt/tensors_deeper_tutorial.html 

rand = torch.rand(2, 4)

doubled = rand * (torch.ones(1, 4) * 2)

https://pytorch.org/tutorials/beginner/introyt/tensors_deeper_tutorial.html
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/generated/torch.rand.html#torch.rand
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/generated/torch.ones.html#torch.ones
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Tensors
• N-D arrays

• Usually created with torch.empty, torch.ones, torch.zeros, torch.rand

• Support most math operations

• Support broadcasting

• Can be stored on CPU or GPU

https://pytorch.org/tutorials/beginner/introyt/tensors_deeper_tutorial.html 

y = torch.rand(2, 2)

y = y.to(my_device)

y = torch.rand(2, 2, device='cuda')

https://pytorch.org/tutorials/beginner/introyt/tensors_deeper_tutorial.html
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Operations and Compute Graph
• The graph is automatically managed in 

PyTorch

• Most typical numpy and math operations 

are supported

• https://pytorch.org/docs/stable/torch.html 

https://pytorch.org/docs/stable/torch.html
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Computing Gradients
• Tensors must have .requires_grad = True

• .backward() computes gradients

x = torch.ones(5)

y = torch.zeros(3)

w = torch.randn(5, 3, requires_grad=True)

b = torch.randn(3, requires_grad=True)

z = torch.matmul(x, w)+b

loss = torch.nn.functional.binary_cross_entropy_with_logits(z, y)

loss.backward()

print(w.grad)

print(b.grad)

Tell torch we need gradients for 
these tensors

Compute the gradients
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Graph Neural Networks
3 pieces of data: node 
values, edge values, 

adjacency information

Several learning tasks: 
node-level, edge-level, 

graph-level



Abhinav Bhatele, Daniel Nichols (CMSC828G)

Graph Neural Networks

f

f
f

f

We can use a neural 
network to simply model 

node features

+
Global pooling can be used 

for graph level tasks

Message passing is used to learn 
from graph relational structure




