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Triton

» Calling functions from Triton kernels
» Shape specific hyperparameters

e Triton functions

* https://triton-lang.org/main/index.html
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DL Models High Level Overview
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Supervised Training Overview
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Supervised Training Overview
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Self-Supervised Training Overview
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Dense Neural Networks

* Linear models are not always enough Hidden
1
flz;:0) =6 " x

» Most real world problems are hierarchical and non-linear

* Neural networks add levels of non-linearity

 Each unit is an activation of a linear transformation

h=0c(O®'x
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Gradient Descent

» Optimization algorithm for convex functions

» Also works well for neural networks

* Iteratively step in opposite direction of gradient
» Used to minimize prediction loss or error

* To minimize f(x):

Ln+1l =— Ln — ﬁva;f(ili’n)

https://www.cs.umd.edu/class/spring2025/cmsc828g/gradient-descent.shtml
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Backpropagation

» Algorithm used to compute gradients

* Uses chain rule and dynamic programming to remove redundant computations

f(z.y) = oy + explay)
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Backpropagation

» Algorithm used to compute gradients

* Uses chain rule and dynamic programming to remove redundant computations
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Backpropagation

» Algorithm used to compute gradients

* Uses chain rule and dynamic programming to remove redundant computations
* Algorithm: @

compute grad of V

|. if cached grad(V), return grad(V) @
2. loop through consumers c of V
2a. d = recursively compute grad of ¢ “
2b. G_= use backprop to compute grad
of Vwrt c

|. return sum of GC ° 0
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Training Loop

last loss = 0.

for i, data in enumerate(training loader):
inputs, labels = data

optimizer.zero _grad()
outputs = model(inputs)

loss = loss fn(outputs, labels)
loss.backward()

optimizer.step()

running loss += loss.item()
if 1 % print _every == print every-1:
last loss = running loss / print every

print("' batch {} loss: {}'.format(i + 1, last loss))
running loss = 0.
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Training Loop

running loss = 0.
last loss = 0.

for i, data in enumerate(training_ loader):
inputs, labels = data

optimizer.zero grad()
outputs = model(inputs)

loss = loss fn(outputs, labels)
loss.backward()

optimizer.step()

running loss += loss.item()

if 1 % print _every == print_every-1:
last loss = running loss / print every
print(' batch {} loss: {}'.format(i + 1, last loss))
running loss = 0.
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Training Loop: Bottlenecks

running loss = 0.
last loss = 0.

for i, data in enumerate(training_ loader):
inputs, labels = data

optimizer.zero grad()
outputs = model(inputs)

loss = loss fn(outputs, labels)
loss.backward()

optimizer.step()

running loss += loss.item()
if 1 % print _every == print_every-1:
last loss = running loss / print every

print(' batch {} loss: {}'.format(i + 1, last loss))
running loss = 0.
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Batching and Stochastic Gradient Descent

» Computing entire gradient is infeasible

* Estimate with sample mean using samples h(l) e (X@)
» Use matrices for fully connected layers
* Batching allows us to trade-off accuracy and efficiency

* Larger batches provide more accurate gradient estimates

* Diminishing returns for larger batches with increasing compute requirements
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Momentum and Adam

 SGD is inefficient

°* We can vary our step size using momentum

Vpt1 = avy, — NV f(Tn)

Lnt+]l] — Ly — Up

« Adam

* Use It and 2" moments to further decide step size

https://www.cs.umd.edu/class/spring2025/cmsc828g/gradient-descent.shtml
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https://www.cs.umd.edu/class/spring2025/cmsc828g/gradient-descent.shtml

Optimizations: Activation Checkpointing

* Recompute values from forward pass to save memory

@O O0O®

Predicted
Output

Desired

Recomputed Backward and Optimizer Pass
Forward Pass

image: https://shivambharuka.medium.com/deep-learning-a-primer-on-distributed-training-part-1-d0ae0054bb I c
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Optimizations: Fusion

* Fuse subgraphs in the compute graph into faster operations

linear
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Pylorch

* A machine learning Python framework
» Sophisticated autograd capabilities
» Supports many accelerator backends

* ML specific optimizations

o ¢ PyTorch
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Tensors

* N-D arrays

» Usually created with torch.empty, torch.ones, torch.zeros, torch.rand

* Support most math operations

SUr
S * DEPARTMENT OF

8 COMPUTER SCIENCE

ones =
twos =

threes

fours =

sgrt2s

torch.zeros(2, 2) + 1
torch.ones(2, 2) * 2

= (torch.ones(2, 2) * 7 - 1) / 2
twos ** 2

= twos ** 0.5

https://pytorch.org/tutorials/beginner/introyt/tensors_deeper_tutorial.html
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https://pytorch.org/tutorials/beginner/introyt/tensors_deeper_tutorial.html

Tensors

* N-D arrays
» Usually created with torch.empty, torch.ones, torch.zeros, torch.rand
* Support most math operations

» Support broadcasting

rand = torch.rand(2, 4)
doubled = rand * (torch.ones(1, 4) * 2)

https://pytorch.org/tutorials/beginner/introyt/tensors_deeper_tutorial.html
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https://pytorch.org/tutorials/beginner/introyt/tensors_deeper_tutorial.html
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/generated/torch.rand.html#torch.rand
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/generated/torch.ones.html#torch.ones

Tensors

* N-D arrays
» Usually created with torch.empty, torch.ones, torch.zeros, torch.rand
* Support most math operations

» Support broadcasting
* Can be stored on CPU or GPU

y = torch.rand(2, 2)
y = y.to(my device)

y = torch.rand(2, 2, device='cuda')

https://pytorch.org/tutorials/beginner/introyt/tensors_deeper_tutorial.html
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Operations and Compute Graph

* The graph is automatically managed in

Py Torch

forward

Py MultBackward
///V/Iﬂ % %

P LogBackward P SinBackward

* Most typical numpy and math operations

are supported

* https://pytorch.org/docs/stable/torch.html

backward

RST
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https://pytorch.org/docs/stable/torch.html

Computing Gradients

 Tensors must have .requires _grad = Irue

e .backward() computes gradients

torch.ones(5) Tell torch we need gradients for
torch.zeros(3) these tensors

torch.randn(5, 3, requires_grad=True)

c = < X
1

torch.randn(3, requires_grad=True)

z = torch.matmul(x, w)+b

loss = torch.nn.functional.binary cross_entropy with logits(z, y)

loss.backward() .
print(w.grad) Compute the gradients I

print(b.grad)
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Graph Neural Networks

3 pieces of data: node Several learning tasks:
values, edge values, node-level, edge-level,

adjacency information graph-level
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Graph Neural Networks

We can use a neural
network to simply model
node features

f >/ N
f >
. + >
f >
Global pooling can be used
4 4 Y, for graph level tasks

Message passing is used to learn
from graph relational structure
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