
Inference Systems
Abhinav Bhatele, Daniel Nichols

Systems for Machine Learning (CMSC828G)



Abhinav Bhatele, Daniel Nichols (CMSC828G)

Questions

• How many students have done from-scratch training?

• How many students have fine-tuned models?

• How many students have used pre-trained models in inference mode?

2



Abhinav Bhatele, Daniel Nichols (CMSC828G)

What is inference?

3

https://medium.com/data-science-at-microsoft/how-large-language-models-work-91c362f5b78f



Abhinav Bhatele, Daniel Nichols (CMSC828G)

What is inference?

3

https://medium.com/data-science-at-microsoft/how-large-language-models-work-91c362f5b78f



Abhinav Bhatele, Daniel Nichols (CMSC828G)

What is inference?

3

https://medium.com/data-science-at-microsoft/how-large-language-models-work-91c362f5b78f



Abhinav Bhatele, Daniel Nichols (CMSC828G)

How is inference done?

• Start with initializing a model on a GPU with weights from a pre-trained model

• Input: a user prompt

• Output: a generation of output tokens

4

LLM

Initialize model 
with weights

A prompt (sequence 
of tokens)

Generate 
probabilities for 

different tokens in 
the vocabulary



Abhinav Bhatele, Daniel Nichols (CMSC828G)

Prefill vs decode

• Prefill stage: when you process the initial set of input tokens to fill the KV cache

• Decode: when you autoregressively generate output tokens one at a time

5



Abhinav Bhatele, Daniel Nichols (CMSC828G)

Compute work in transformer models

6

DecoderEmbedding Decoder Decoder Classifier

La
ye

rs



Abhinav Bhatele, Daniel Nichols (CMSC828G)

Compute work in transformer models

6

DecoderEmbedding Decoder Decoder Classifier

La
ye

rs

Self 
attention

ReLU

Attention block Multi-layer perceptronD
ec

od
er Linear Linear LinearLinear



Abhinav Bhatele, Daniel Nichols (CMSC828G)

Compute work in transformer models

6

DecoderEmbedding Decoder Decoder Classifier

Li
ne

ar

Forward 
Pass

La
ye

rs

Self 
attention

ReLU

Attention block Multi-layer perceptronD
ec

od
er Linear Linear LinearLinear

to synchronize their weights by issuing all-reduces on their
gradients after every batch.

B. Three-dimensional Tensor Parallelism
Next, we describe how each GPU group, composed of

Gtensor GPUs, parallelizes the work within their copy of the
neural network. Each GPU group processes the batch shard
assigned to them. Tensor parallelism refers to parallelizing the
computation within every layer of the neural network across
GPUs. We first describe the parallelization of a single layer
using our approach. We use the fully-connected (FC) or Linear
layer as an example.

Let us first look at the serial computation in an FC layer.
Each FC layer computes one half-precision matrix multiplica-
tion in the forward pass and two half-precision matrix multipli-
cations in the backward pass. The inputs to the matrix-multiply
(MM) kernel in the forward pass are the input activation, I , and
the layer’s weight matrix, W . The output of the MM operation
is the output activation, O. This is illustrated in Figure 1. In
the backward pass, there are two MM operations, @L

@O
⇥W

>

and I
>⇥ @L

@O
, where L is the training loss. Thus, parallelizing

an FC layer requires parallelizing these three MM operations
across multiple GPUs.

OI

W

Input 
Activations

Weights

Output
Activations

k

n

m

k

Fig. 1: Computation in the forward pass of a fully-connected
(FC) layer with input I and layer weights W . The output, O
is a matrix multiplication of I and W . We assume I 2 Rm⇥k,
W 2 Rk⇥n, and O 2 Rm⇥n.

In order to parallelize a single matrix-multiply computation
across several GPUs, we adapt Agarwal et al.’s 3D parallel
matrix multiplication algorithm [5]. As noted in Section III-A,
we need to exploit Gtensor GPUs for tensor parallelism within
each group. Since Agarwal’s algorithm uses a virtual 3D grid
of processes, we first organize the Gtensor GPUs further into a
virtual three-dimensional (3D) grid of dimensions Gx⇥Gy ⇥
Gz . As an example, we show a topology of eight GPUs with
Gx = Gy = Gz = 2 in Figure 2. Additionally, we use gi,j,k

to refer to a GPU in the grid.
Now let us discuss how we use Agarwal’s algorithm to

distribute input activations, I , and weights, W , onto this 3D
grid of GPUs. We do 2D decompositions of both I and W into
sub-blocks and map them to orthogonal planes of the 3D grid.
For example, in Figure 2, we observe that W is partitioned
along the X and Y -axes, and replicated along the Z-axis. This
means that GPUs groups in each XY plane have a copy of

2 3

0 1

6 7

4 5

W00 W01

W10 W11

W00 W01

W10 W11

I00

I10

I01

I11

I00

I10

I01

I11

Gx

I00 * W01

I01 * W11

O01All-reduce

O00 O01

O10 O11

O00 O01

O10 O11

W I O

GPUs

Gy

Gz

X

Y

Z

Fig. 2: Parallelization of an FC layer with Agarwal’s 3D
parallel matrix multiplication algorithm [5] on eight GPUs
organized in a 2 ⇥ 2 ⇥ 2 topology. We use Gx, Gy , and Gz

to refer to the number of GPUs along the three dimensions of
the virtual grid topology.

W . The I matrix on the other hand is partitioned along the X

and Z-axes, and replicated along the Y -axis. Once each GPU
has a unique sub-block of I and W, it can compute a portion
of the O matrix, which can be aggregated across GPUs in the
Y direction using all-reduces.

In our adapted version of Agarwal’s algorithm, instead of
replicating W along the Z-axis, we further shard W along
the Z-axis and denote these sub-shards as Ŵ . This is done
to save memory as the set of GPUs along the Z-axis will
only have to store the gradients and optimizer states of
unique shards of the weights. We now discuss how we adapt
Agarwal’s algorithm to work with sharded weight matrices
in the forward and the backward passes of our 3D tensor
parallel algorithm. We illustrate the forward pass in function
TENSOR_PARALLEL_FORWARD_PASS of Algorithm 1 from
the perspective of GPU gi,j,k.

Algorithm 1 Our 3D tensor parallelism for gi,j,k in a Gx ⇥
Gy ⇥Gz grid. We highlight all communication operations in
blue.

1: function TENSOR PARALLEL FORWARD PASS(Ik,j , Ŵj,i)

2: Wj,i = ALL-GATHERz(Ŵj,i)

3: Ôk,i = Ik,j ⇥Wj,i

4: Ok,i  ALL-REDUCEy(Ôk,i)
5: // Cache Ik,j and Wj,i for the backward pass
6: return Ok,i

7: end function
8:
9: function TENSOR PARALLEL BACKWARD PASS( @L

@Ok,i
)

10: Retrieve Ik,j and Wj,i from cache

11: @L

@Ik,j
 ALL-REDUCEx( @L

@Ok,i
⇥W

>
j,i)

12: @L

@Ŵj,i
 REDUCE-SCATTERz(I>k,j ⇥ @L

@Ok,i
)

13: return @L

@Ik,j
, @L

@Ŵj,i

14: end function

The inputs to this function are Ik,j and Ŵj,i i.e. the shards
of I and W mapped to GPU gi,j,k by our algorithm. Since we
have performed an extra sharding of W along the Z-axis, we
first bring back the full required sub-block of W by issuing



Abhinav Bhatele, Daniel Nichols (CMSC828G)

Why do we store the KV cache?

7

S
Attention

d d d

Q K V

S

d

S

d

S

S

Q . KT V

d

S

S

d

Q KT



Abhinav Bhatele, Daniel Nichols (CMSC828G)

Various modes in which to run inference

• Single prompts

• Batched inference: lots of prompts put together into a batch

• Online mode: create a server

• Single or multiple users interact with the server

8



Abhinav Bhatele, Daniel Nichols (CMSC828G)

Performance metrics for inference

• Latency:

• Time to first token

• Latency between tokens

• Throughput: tokens generated per second

9



Abhinav Bhatele, Daniel Nichols (CMSC828G)

Inference frameworks

• vLLM

• SGLang

• ORCA

10




