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Announcements

* Interim report for the project is due on Aptri+ April 22
* Midterm is on April 10
* Office hours

o Today |-2pm IRB 5237
o0 Wednesday |2-2pm Zoom (link on piazza)
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Attention Reminder

e Determine how much tokens should “attend” to other tokens
» Consider a hashmap of our tokens

there’s no place home
I(I k2 k3 °© o0 kn
Vi V2 V3 .o i
there’s no place home
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Attention Reminder

e Determine how much tokens should “attend” to other tokens
» Consider a hashmap of our tokens

there’s no place home
place
k K K, N4
9
Vi V2 V3 .o Vi
We want to map tokens there’s no Place home

(queries) to values based on
the most similar keys

.
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Attention Reminder

e Determine how much tokens should “attend’ to other tokens
» Consider a hashmap of our tokens

We can answer this query
with a scaled dot product of
the similar values

J

there’s no place home
place
k. k, K, k_
q
I
Vi V2 V3 Vi
" ' " there’s no place home
0.6%v,+0.4™v_

But how much should we
scale this dot product!?

J
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Attention Reminder

e Determine how much tokens should “attend” to other tokens
» Consider a hashmap of our tokens

Compute dot product of the () — [Q'kl C]'k’z Q'k} ]
— 1 Y 17 R B & A £

We can answer this query query with all the keys
with a scaled dot product of V.
the similar values y
there’s no place home
place
; K { Get probabilities from dot P — SOftmaX(O)
| products
| M E_El SR e
there’s no place home
0.6*v,+0.4%v_ P
Scale the values based on \ T
But how much should we probabilities Lg — P[Ula s Un]
scale this dot product!? J J
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Attention Reminder

e Determine how much tokens should “attend’ to other tokens
» Consider a hashmap of our tokens

O — [Qikla Qik27 SRR ,q@kn]

Slace there’s no place home
k k k k
. ' e ISR P = softmax(O)
| Vi V2 V3 .o Vi
there’s no place home
0.6*v,+0.4*v
3 n

This is O(N?) in the

]T
sequence length!

r; = Plvi,..., v,

J
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Addressing Quadratic Memory Constraints

Outer Loop

FlashAttention:VVe've seen
methods to avoid the NxN
space complexity

Kl:dxN

Copy Block to SRAM
Outer Loop

Q:Nxd

Compute Block
on SRAM

Inner Loop
doo7 491N

sm(QK")V: N xd

Inner Loop

sRSIp
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Reducing Complexity in Attention

There’ .
no place like  home

There’

no

place

like

home

QERSITP
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Reducing Complexity in Attention

There’

We need to compute how no  place like  home
much each token attends to There’
hers.
the others ) s

no

place

like

home
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Reducing Complexity with Sparsity

There’ \
We need to compute how b RRE e L In practice, the attention
much each token attends to There’ Practice,
the others S matrix is near sparse
: ) J

no

place

like

home

RSI
QERSIT
)
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Reducing Complexity with Sparsity

We need to compute how place  like ~ home

much each token attends to There’
the others.

So for a particular query...

.

How do we determine what
other tokens are important to
attend to?

RSI
QERSIT
)
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In practice, the attention
matrix is near sparse
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Reducing Complexity with Locality

Often in language we care
most about near words when

interpreting something

ngSI TP
5&@0&
18 56
L)
RyLM
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We can attend only to a
neighborhood of tokens
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Reducing Complexity with Structured Sparsity

We can try to find

some structured

sparse format that...

reduces compute and/or
memory requirements...

.

and preserves accuracy.
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Reducing Complexity with Dynamic Sparsity

We can figure out the
sparsity at runtime

J

SUr
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Trade-off of better
sparsity pattern vs more
memory or compute

J
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Reducing Complexity from Repeated Structure

Linear redundancies can be
factorized or projected
into a smaller space

Repeated patterns can be
compressed

1]

.

comeression or |

dimensionality reduction
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How does this help us?

* We do not need to compute all of the attention values

* Potentially sub-quadratic attention
* We do not need to store the whole KV-cache!

* This can get quite large, becoming a memory bottleneck
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Benchmarking Approximate Algorithms

» Accuracy/correctness is crucial to benchmark!

* How do we measure accuracy of approximate attention!

* perplexity of model

* performance on downstream benchmarks

S
| 1
perplexity(X) = exp{ =< > logpy (zilwo, 71, .. wi-1)
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K-V Cache Eviction

XWy— =

there’s no place like

k k k k X‘17
| 2 3 4 Y kj - g <

0 <

VI V2 V3 V4

there’s no place like

XW,— -

0 <
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K-V Cache Eviction

XWy—

there’s no place like home

k k, k, |k, \, )( ‘ )‘ 7]{; L

\' \' \' \' \' ~

I 2 3 4 6
V), AN

there’s no place like home
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K-V Cache Eviction

XW,— - ==

This takes up a lot of space.

there’s no place like home Do we need all of them? )
)
k k k k k W
| 2 3 4 5 AV, % kj L S < %
v, v, v, v, v, ~) | Cache keys and

values to save space

there’s no place like home y

xw— ||
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K-V Cache Eviction

there’s

K,

Vi

there’s
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no place
k2 k3

V2 V3
no place

like

K,

A

like

XWo—r-

We can evict tokens we
think are unimportant

S <

5 <

"ZTV"V_E

XWy—
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K-V Cache Eviction

X Wi

Now we can’t use them

, : to compute attention for
theres no place like home
the next token

k k, k, |k, 4»)( ‘ 1 7]{; [

VI V2 V3 V4 V6

there’s no place like home

.

AWy—
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H20: Approximate Attention

* How can we reduce the KV cache size without hurting accuracy!?
* 30B, 128 bs, 1024 sequence length needs ~180GB space for KV cache alone

* Not all attention values are needed, but how do we determine the most important?

* Across many popular LLMs attention is ~95% sparse
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les leb

Attention Scores Follow A Power Law

Co-occurrence Times

1
[W—
N

Accumulated Attention Scores

-

o
W

-0.0

Word Index

{SIERSITP
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0 10000 20000 30000 40000 50000

A small subset of tokens are
most influential for attention
computation
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Are the important tokens that important?

Removing the “heavy hitter”

tokens leads to a significant
drop in accuracy

J
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Only Retain Important Tokens

» Experimental results suggest keeping heavy-hitters and recent tokens in KV cache is
enough for high accuracy with big memory savings

* How do we determine heavy-hitters apriori?
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Use Local Attention Scores to Approximate
Global Attention

'

|Children laughed | and played i ;n: 1 the
Vaied . it @ 00 SIS
5 \
Use local attention steps Q %
during decoding phase to evict Y R URY Gy YO8
from KV cache J
y <
Sufficiently models the global
attention scores
Eviction w. Global Statistic
: (infeasible)
& =

S
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H20 Results: How does it do?

Across most of their experiments they
can reduce KV cache to 20% size and

get comparable results y

COPA, OPT-30B

COPA, OPT-66B

4 ==#— Heavy-Hitter Oracle

e e
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50 45 |="" Full
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KV Cache Budget (%)

Models “collapse” once an important
token is evicted from K-V cache

KV Cache Budget (%)
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It actually helps accuracy in a
number of benchmarks
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Combining with Other Methods

» Cache eviction policy can be combined with other types of sparse attention
» Get the benefits of other types of sparsity, while reducing KV cache size

» Generally improves all other methods
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Beyond Sparsity

* Low rank approximations

* “Linformer: Self-Attention with Linear Complexity” Wang et. al.

l2-l§rers Transformer

24-lgers Transformer

1.0 ‘ L ,
gg .J////// : ‘/””’:::::::====—»_,
< 09 T
§D ' Linformer KAV
T 08 wK (wV)
v
2z
= 0.7 e & =
5
;0.0 k Xn dm X di k x dy
E n Xdpy
g 0.5 i —— IMDB : — IMDB
) ! - Wiki103 : Wikil03
Z 04 : :
0 128 512 0O 128 512

Eigenvalue index
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Beyond Sparsity

* Low rank approximations

* Kernel methods
* “Rethinking Attention with Performers” Choromanski et. al.
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Beyond Sparsity

* Low rank approximations

e Kernel methods Use hashing to bucket similar
. Hashing tokens and compute dense

J

attention within buckets
e “REFORMER:The Efficient Transformer’ Kitaev et. al.

9, 9, 9; 9, 95 Y, 9, 9, 9, 9; 95 95

k
§?332222=keys || " “ " || Il " " I[ k; = e " - .
LSH bucketing . J.' !.[:":l..l . :z3 .
L ] L ]
Sort by LSH bucket ? & i ,/\\ k: o .
e, \\‘
IIIII 1] Illl || L L1 : | :
Chunk sorted . (a) Normal (b) Bucketed
Fequengeto q, 9, 9, G, 9, 4 g, @ G4, 9, G
parallelize
e I ] ]
Attend within
same bucket in ; -\ ' \ F~ \
reissscrnc IR ;-l N [ ] ]

(d) Chunked
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Q

* DEPARTMENT OF : : :
" COMPUTER SCIENCE Abhinav Bhatele, Daniel Nichols (CMSC828G)

YLE»é



Beyond Sparsity

* Low rank approximations
» Kernel methods

» Hashing

 Clustering

* “Efficient Content-Based Sparse Attention with Routing Transformers” Roy et. al.

u — Use fast K-Means to cluster
tokens and only do dense
attention within clusters p

vvvvv

(a) Local attention (b) Strided attention (c) Routing attention

RSI
QERSIT
)
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Beyond Sparsity

* Low rank approximations
» Kernel methods

» Hashing

 Clustering

» Sinks and Memory Augmentation
* “ETC:Encoding Long and Structured Inputs in Transformers” Ainslie et. al.

Long Inputs via Global-Local Attention

Full attention Local attention

(unidirectional) (bidirectional) ETC (bidirectional)

Quadratic Linear compilexity, but Linear complexity, and
complexity no connection between connection between distant
distant tokens tokens via global memory

RSI
x‘lﬁ by
Q
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Beyond Sparsity

* Low rank approximations
» Kernel methods

» Hashing
Process in chunks and carry some

 Clustering , ,
. . information between chunks
* Sinks and Memory Augmentation y

 Recurrence
* “Transformer-XL:Attentive Language Models Beyond a Fixed-Length Context” Dai et. al.

---------------------

; o O O O @ ©® 6
o o © 0 ©
o o = © o0 ©
o o © o o 7 ‘
e — EE— @ R o S L et o J
(a) Training phase. (b) Evaluation phase.
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Beyond Sparsity

* Low rank approximations
» Kernel methods
» Hashing
 Clustering
» Sinks and Memory Augmentation
» Recurrence
* Hybrid
* H20
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