
Long context in LLMs
Abhinav Bhatele, Daniel Nichols

Systems for Machine Learning (CMSC828G)



Abhinav Bhatele, Daniel Nichols (CMSC828G)

Questions

• What are the longest sequence lengths you have used?

• What is your specific use-case?

2



Abhinav Bhatele, Daniel Nichols (CMSC828G)

Many tasks require long context

• Understanding and generating code

• Summarizing large documents

• Long-form question answering

• Longer context can also improve ML performance

• Users want to try more complex tasks with LLMs everyday

3



Abhinav Bhatele, Daniel Nichols (CMSC828G)

Challenges with long sequences

• Quadratic scaling in attention

• Both for compute and memory

4

O(S2d) O(S2d)



Abhinav Bhatele, Daniel Nichols (CMSC828G)

Challenges with long sequences

• Quadratic scaling in attention

• Both for compute and memory

4

S

d

S

S

Q . KT V

O(S2d) O(S2d)



Abhinav Bhatele, Daniel Nichols (CMSC828G)

Challenges with long sequences

• Quadratic scaling in attention

• Both for compute and memory

4

S

d

S

S

Q . KT V

d

S

S

d

Q KT

O(S2d) O(S2d)



Abhinav Bhatele, Daniel Nichols (CMSC828G)

Systems challenges

• GPU memory limits batch size and sequence length

• Larger sequence lengths increase number of flops required

• Leads to larger messages on the network

• More data movement in memory (larger matrices) and I/O (datasets, checkpoints) 

5



Abhinav Bhatele, Daniel Nichols (CMSC828G)

Solutions

• Memory optimizations: activation checkpointing, ZeRO-style memory optimizations

• Low-rank approximations

• Approximate / sparse attention: H2O, Top-K

• Separate category: parallelizing attention

6



Abhinav Bhatele, Daniel Nichols (CMSC828G)

Blockwise Parallel Transformer

7

https://arxiv.org/abs/2305.19370

where softmax is applied row-wise. Standard attention implementations materialize the matrices
QK

T and softmax(
QKT
→
d
) to HBM, which takes O(s

2
) memory, so the overall space complexity

is O(s
2
). There has been a large body of work trying to reduce memory usage of self-attention by

using online softmax [37, 42, 14] to reduce memory cost of self-attention by preventing it from full
materialization. And these approaches reduce memory footprint from O(s

2
) to O(s). However, the

large feedforward layers have been overlooked.

In addition to attention sub-layers, each of the attention layers is accomplished with a fully connected
feedforward network, which is applied to each position separately and identically. This consists of
two linear transformations with a ReLU activation in between.

FFN(x) = max(0, xW1 + b1)W2 + b2 (2)
While the linear transformations are the same across different positions, they use different parameters
from layer to layer. The large size of the feedforward network requires substantial memory resources,
and this becomes even more pronounced when dealing with large context sizes. See Section 3.1 for
analysis of memory cost associated with transformers.

3 Blockwise Parallel for Large Context Models

Self-attention can be computed in a blockwise manner without materializing the softmax attention
matrix softmax(QK

T
) [37, 14, 42]. This approach involves splitting the sequences Q → Rs↑d

into Bq blocks and sequences K,V → Rs↑d into Bkv blocks. For each query block, the blockwise
attention Attention(Q,K, V ) can be computed by iterating over all key-value blocks. Once the
blockwise attention is computed, the global attention matrix can be obtained by scaling the blockwise
attention using the difference between the blockwise and global softmax normalization constants [37].
This is achieved by keeping track of normalization statistics and combining them from all blocks to
scale each block accordingly. For a specific query block Qi, 1 ↑ i ↑ Bq , the corresponding attention
output can be computed by scaling each blockwise attention as follows:

Attention(Qi,K, V ) = Scaling({exp(QiK
T
j )Vj}Bkv

j=1). (3)

The scaling operation scales each blockwise attention based on the difference between the blockwise
maximum and the global maximum:

Attention(Qi,Kj , Vj) = exp
(
QiK

T
j ↓max(QiK

T
j )

)
/

∑
exp

(
QiK

T
j ↓max(QiK

T
j )

)

maxi = max
(
max(QiK

T
1 ), . . . ,max(QiK

T
B)

)

Attention(Qi,K, V ) =
[
exp(QiK

T
j ↓maxi) Attention(Qi,Kj , Vj)

]Bkv

j=1
.

This blockwise self-attention computation eliminates the need to materialize the full attention matrix
of size O(n

2
), resulting in significant memory savings.

We observe that the blockwise computation is not limited to self-attention but can also be applied
to the feedforward network. For each query block, after iterating over the key and value blocks, the
feedforward network can be computed along with a residual connection, completing the attention and
feedforward network computation for that query block. This means that the model does not need to
compute the feedforward network on the full sequence, but rather on intermediate blocks, resulting in
memory savings. The computation for a query block is given by:

Outputi = FFN
(
Attention(Qi,K, V ) +Qi

)
+Attention(Qi,K, V ) +Qi.

Therefore, the output for each block consists of the feedforward network, self-attention, and residual
connection computed in a blockwise manner.

It is worth mentioning that for large models, the memory cost of the feedforward network on the
full sequence can be much larger than the memory efficient attention. Therefore computing the
feedforward network on the same block as attention can significantly reduce memory cost, and it
also reduces data movements, contributing to overall computational efficiency. Moreover, we should
remark that blockwise parallelism can be directly applied to the final cross entropy loss, which can
further minimize memory cost. The full process of our framework, coined as BPT, is summarized in
Algorithm 1.

3

Algorithm 1 Reduce memory cost with BPT.
Required: Input sequence x. Number of query blocks Bq . Number of key and value blocks Bkv .
Initialize
Project input sequence x into query, key and value.
Split query sequence into Bq of query input blocks.
Split key and value sequences into Bkv of key-value input blocks.
for outer = 1 to Bq do

Choose the outer-th query.
for inner = 1 to Bkv do

Choose the inner-th key and inner-th value block.
Compute attention using query, key and value, and record normalization statistics.

end for
Combine each blocks by scaling them to get attention output for the outer-th input block.
Compute feedforward on attention output and add residual connection.

end for

2bsh bytes, and saving dropout mask needs bsh bytes. The maximum attention activation size of
attention is O(s

2
) with checkpointing.

FFN: For the first linear layer, saving input needs 2bsh bytes. For activation, saving input needs 8bsh
bytes. For the second linear layer, saving input needs 8bsh bytes. For dropout, saving the mask needs
bsh bytes. With checkpointing, the maximum activation size of FFN is 8bsh bytes.

Consequently, for a large context length, the memory cost of activation in vanilla Transformer is
O(s

2
).

BPT:
Attention: Since BPT does not materialize full attention and instead computes it blockwise, it needs
to store intermediate blockwise activations in the key-value loop, which has a maximum activation
size of 4bch with checkpointing. Additionally, it needs to store q output activations for the query
loop, which requires 2bsh bytes. Since s → c, the maximum activation size is 2bsh.

FFN: When iterating the FFN over blocks, BPT needs to save the following activations: For the first
linear layer, saving input needs 2bch bytes. For activation, saving input needs 8bch bytes. For the
second linear layer, saving input needs 8bch bytes. For dropout, saving the mask needs bch bytes. In
total, 19bch bytes are needed. Additionally, storing the output of the for loop requires 2bsh bytes.
Therefore, the maximum FFN activation size is 2bsh.

Consequently, each BPT layer’s memory cost of activation is 2bsh.

Memory-Efficient / Flash Attention:
Attention: Similar to BPT attention, the maximum activation size is 2bsh.

FFN: Similar to the vanilla FFN, the maximum activation size is 8bsh.

Consequently, each Flash Attention layer’s memory cost is 8bsh.

Comparing the activation memory of Flash Attention/Memory-Efficient Transformer with BPT, we
see that BPT offers 8bsh/2bsh = 4 times memory saving. By taking into account other factors
of memory cost such as model parameters and optimizer states, BPT allows training with context
lengths 2-4 times larger than prior state-of-the-arts.

3.2 Why Blockwise Parallel

The utilization of blockwise parallelization may raise questions about the effectiveness of running
parallel computers, as computation can become sequential between blocks. However, the benefits of
blockwise parallelization depend on the model size and hardware configuration. In cases where the
model is large or the context length is extremely long, a block may reach its maximum arithmetic
density, making it impractical to execute the original full-length sequence in parallel. In such
scenarios, blockwise parallelization treats the long sequence as short ones, allowing dealing with
large models and effectively enabling large context size. Moreover, using blockwise parallelization

5



Abhinav Bhatele, Daniel Nichols (CMSC828G)

Ring Attention

8




