

#### Quantization Abhinav Bhatele, Daniel Nichols



#### Announcements

- Interim report for the project is due on April 22
- Sign up for presentation slot (link on Piazza)
- Send data requirements (if needed) to course email by end of day today





## **Floating Point Numbers**

- Computers cannot store arbitrary precision
- Need approximations
- IEEE 754 floating point standard







## Do we need all 64 bits?

- FP64 yields ~16 decimals of precision
  - <u>https://en.wikipedia.org/wiki/IEEE 754#Basic and interchange formats</u>
- Deep learning does not need all this precision
  - We often use fp32, fp16, bf16, or some combination for training





## Do we need all 64 bits?

- FP64 yields ~16 decimals of precision
  - https://en.wikipedia.org/wiki/IEEE 754#Basic and interchange formats
- Deep learning does not need all this precision
  - We often use fp32, fp16, bf16, or some combination for training
- We usually need even less bits for inference!



### Quantization

- Map existing weights/activations from higher to lower precision
  - i.e. fp32 -> fp16
- Why quantize?
  - Save memory
  - Potentially faster compute
  - Potentially lower energy consumption
- When not to quantize
  - Lack of native hardware support (if performance matters)
  - Operations sensitive to precision







### **Quantization: An Example**

- fp32 can represent a much wider range of values
- How do we map them to int8?







#### • Suppose we want to quantize a model with N parameters from fp32 to 8 bit integers

An fp32 float can be written as an affine transformation of an 8 bit integer





### **Quantization: An Example**

- fp32 can represent a much wider range of values
- How do we map them to int8?

Any other issues or improvements?



Abhinav Bhatele, Daniel Nichols (CMSC828G)

 $\hat{x} = \left| \begin{array}{c} x \\ - \\ \mu \end{array} + \eta \right|$ 

#### • Suppose we want to quantize a model with N parameters from fp32 to 8 bit integers

An fp32 float can be written as an affine transformation of an 8 bit integer





## **Types of Quantization**

- Post-training quantization
  - Quantize the weights of a pre-trained model
  - Simple, less compute-intensive
- Quantization-aware Training
  - Adapt training process so that quantization is easier (i.e. ensure weights all in particular range)
  - Better quantizations at the cost of compute and training complexity







- Layer-wise quantization
- Efficient solution to optimization problem









Abhinav Bhatele, Daniel Nichols (CMSC828G)

#### $\operatorname{argmin}_{\widehat{\mathbf{W}}} ||\mathbf{W}\mathbf{X} - \widehat{\mathbf{W}}\mathbf{X}||_2^2.$

#### Weight Matrix / Block

#### **AWQ: Activation-Aware Weight Quantization**

- Quantize weights of an LLM
- Not all weights are equally important
- Based on previous paper "SmoothQuant: Accurate and Efficient Post-Training"
  - Quantization for Large Language Models"







### **Performance Motivation**







Generation is extremely memory bound



Abhinav Bhatele, Daniel Nichols (CMSC828G)

#### Quantization can significantly decrease the memory footprint



#### Why not quantize activations and weights?

- For lower arithmetic intensities weight-only quantization has a higher ceiling
- For larger scales quantizing both may be beneficial







#### **Naive Quantization Methods Hurt Model** Performance

| -1.8 | 2.1  | 3.4  |
|------|------|------|
| -0.1 | 0.3  | -1.2 |
| 1.7  | 0.5  | -0.6 |
| -1.9 | -1.0 | -3.9 |

W





### **Potential Weight-Aware Solution**

|      | W    |      |
|------|------|------|
| -1.8 | 2.1  | 3.4  |
| -0.1 | 0.3  | -1.2 |
| 1.7  | 0.5  | -0.6 |
| -1.9 | -1.0 | -3.9 |

Use LI or L2 norm to find most important weights



Abhinav Bhatele, Daniel Nichols (CMSC828G)



This also doesn't help much in practice

#### **Use Activations to Determine Important** Weights

|      | W    |      |
|------|------|------|
| -1.8 | 2.1  | 3.4  |
| -0.1 | 0.3  | -1.2 |
| 1.7  | 0.5  | -0.6 |
| -1.9 | -1.0 | -3.9 |







Abhinav Bhatele, Daniel Nichols (CMSC828G)

This would be really difficult to implement and optimize!



## **Observation: Scaling Weights**

• What happens when we scale particular weights before quantization?

y = wx,

Linear quantization

 $Q(\boldsymbol{w}) = \Delta \cdot \text{Round}$ 





Abhinav Bhatele, Daniel Nichols (CMSC828G)

$$y = Q(\boldsymbol{w})\boldsymbol{x}$$

Forward pass and forward pass with quantization

$$\left(\frac{\boldsymbol{w}}{\Delta}\right), \quad \Delta = \frac{\max\left(|\boldsymbol{w}|\right)}{2^{N-1}}$$

$$\cdot s) \cdot \left(\frac{x}{s}\right)$$

What happens when we scale by s>l?

## **Observation: Scaling Weights**

• What happens when we scale particular weights before quantization?

$$y = \boldsymbol{w} \boldsymbol{x}, \quad y = Q(\boldsymbol{w}) \boldsymbol{x}$$
  
 $Q(\boldsymbol{w}) = \Delta \cdot \text{Round} \left(\frac{\boldsymbol{w}}{\Delta}\right)$   
 $\Delta = \frac{\max\left(|\boldsymbol{w}|\right)}{2^{N-1}}$   
 $Q(\boldsymbol{w} \cdot \boldsymbol{s}) \cdot \left(\frac{\boldsymbol{x}}{s}\right)$ 

Observation 2: Scaling a single or small subset of w values has little impact on  $\Delta$ .  $\Delta' \approx \Delta$ 



Abhinav Bhatele, Daniel Nichols (CMSC828G)

tion I: Expected error rounding is ~0.25; condent of w and s

$$= \Delta' \cdot \operatorname{Round} \left(\frac{ws}{\Delta'}\right) \cdot \frac{x}{s}$$

Observation 3: x and  $\Delta$  are fp16 and have no quantization error

## **Observation: Scaling Weights**

• What happens when we scale particular weights before quantization?

Err

$$y = wx, \quad y = Q(w)x$$

$$Q(w) = \Delta \cdot \text{Round}\left(\frac{w}{\Delta}\right)$$

$$\Delta = \frac{\max\left(|w|\right)}{2^{N-1}}$$
Based on observation 3  
we can represent the  
quantization errors
$$\text{Err}\left(Q(w \cdot s)\left(\frac{x}{s}\right)\right) = \Delta' \cdot \text{RoundErr}\left(\frac{ws}{\Delta'}\right)$$

## Scaled term has lower relative error for s > /!



$$\frac{\left(Q(w \cdot s)\left(\frac{x}{s}\right)\right)}{\operatorname{rr}\left(Q(w)x\right)} = \frac{\Delta'}{\Delta \cdot s} \approx$$



### But Does It Work?

• Try different s in practice





Abhinav Bhatele, Daniel Nichols (CMSC828G)

| /////////////////////////////////////// |                                | 11 1              |       |                         |
|-----------------------------------------|--------------------------------|-------------------|-------|-------------------------|
| As s gets lar<br>assumption             | rger the $\Delta'$ on breaks d | $\sim \Delta$ own |       |                         |
| s = 1.25                                | s = 1.5                        | s = 2             | s = 4 |                         |
| 2.8%                                    | 4.4%                           | 8.2%              | 21.2% |                         |
| 1.005                                   | 1.013                          | 1.038             | 1.213 | The relative e          |
| 0.804                                   | 0.676                          | 0.519             | 0.303 | does keep ge<br>smaller |
| 12.87                                   | 12.48                          | 11.92             | 12.36 |                         |

In practice, some *s*<sup>\*</sup> gives the best modeling performance



#### **Use Activations to Determine Important** Weights

| _    | W    |      |
|------|------|------|
| -1.8 | 2.1  | 3.4  |
| -0.1 | 0.3  | -1.2 |
| 1.7  | 0.5  | -0.6 |
| -1.9 | -1.0 | -3.9 |







Abhinav Bhatele, Daniel Nichols (CMSC828G)

Use search/sweep over calibration dataset to find optimal scaling parameters

#### **AWQ Results**

| AWQ is performs better or near 1% | ĺ |
|-----------------------------------|---|
| fp16, but is much faster and more | ŀ |
| memory efficient                  | ļ |

| OPT | $(\mathbf{PPL}\downarrow)$ | 1.3B |
|-----|----------------------------|------|
|     |                            |      |

| FP16    | 14.62  |
|---------|--------|
| RTN     | 119.47 |
| 1% FP16 | 16.91  |
| s = 2   | 18.63  |
| AWO     | 16.32  |



Abhinav Bhatele, Daniel Nichols (CMSC828G)

| 6.7B  | 13B                                               | 30B                                                       |
|-------|---------------------------------------------------|-----------------------------------------------------------|
| 10.86 | 10.13                                             | 9.56                                                      |
| 23.54 | 46.04                                             | 18.80                                                     |
| 11.39 | 10.43                                             | 9.85                                                      |
| 11.92 | 10.80                                             | 10.32                                                     |
| 11.39 | 10.56                                             | 9.77                                                      |
|       | 6.7B<br>10.86<br>23.54<br>11.39<br>11.92<br>11.39 | 6.7B13B10.8610.1323.5446.0411.3910.4311.9210.8011.3910.56 |

A fixed value of *s* gives decent results, but it's better to select dynamically

### AWQ Comparison with Other Methods

AWQ yields better perplexity than other SotA approaches (GPTQ\*)

| PPL↓ |        |      | Llama-2   |      | LLaMA |         |      |      |
|------|--------|------|-----------|------|-------|---------|------|------|
|      |        | 7B   | 7B 13B 70 |      | 7B    | 13B 30B |      | 65B  |
| FP16 | _      | 5.47 | 4.88      | 3.32 | 5.68  | 5.09    | 4.10 | 3.53 |
|      | RTN    | 6.66 | 5.52      | 3.98 | 7.01  | 5.88    | 4.88 | 4.24 |
| INT3 | GPTQ   | 6.43 | 5.48      | 3.88 | 8.81  | 5.66    | 4.88 | 4.17 |
| g128 | GPTQ-R | 6.42 | 5.41      | 3.86 | 6.53  | 5.64    | 4.74 | 4.21 |
|      | AWQ    | 6.24 | 5.32      | 3.74 | 6.35  | 5.52    | 4.61 | 3.95 |
|      | RTN    | 5.73 | 4.98      | 3.46 | 5.96  | 5.25    | 4.23 | 3.67 |
| INT4 | GPTQ   | 5.69 | 4.98      | 3.42 | 6.22  | 5.23    | 4.24 | 3.66 |
| g128 | GPTQ-R | 5.63 | 4.99      | 3.43 | 5.83  | 5.20    | 4.22 | 3.66 |
|      | AWQ    | 5.60 | 4.97      | 3.41 | 5.78  | 5.19    | 4.21 | 3.62 |



#### **AWQ Downstream Tasks**

#### Math and coding downstream tasks

| MBPP (7B) | pass@1 | pass@10 | GSM8K | 7B    | 13B   | 70B   |
|-----------|--------|---------|-------|-------|-------|-------|
| FP16      | 38.53  | 49.77   | FP16  | 13.87 | 26.16 | 56.41 |
| RTN       | 37.51  | 48.49   | RTN   | 11.07 | 21.23 | 53.98 |
| GPTQ      | 31.97  | 44.75   | GPTQ  | 12.13 | 24.26 | 56.03 |
| AWQ       | 40.64  | 49.25   | AWQ   | 13.57 | 25.25 | 56.40 |



AWQ performance is close to fp16 performance

### **AWQ Runtime Results**

#### TinyChat benchmark for edge devices







|            |                   | AWÇ         | is faste<br>mei          | er and sa<br>mory | ves on                                  |                    |             |                |
|------------|-------------------|-------------|--------------------------|-------------------|-----------------------------------------|--------------------|-------------|----------------|
|            |                   |             | 11/                      | /                 |                                         |                    |             |                |
| 39         | Durs (FP16)       | 38          | ours (AWQ                | , W4A16)          | $\begin{array}{c}60\\45\\20\end{array}$ | MO                 | 60          | 52             |
|            | 21<br>FP16<br>OOM | 11 12       | FP16<br>OOM <sup>9</sup> | 7 9<br>22         | 30 00<br>15 HI<br>0                     | FP16 OC<br>FP16 OC | FP16 OC     |                |
| na-2<br>3) | Llama-2<br>(13B)  | MPT<br>(7B) | MPT<br>(30B)             | Falcon<br>(7B)    | 0<br>Llama-2<br>(7B)                    | Llama-2<br>(13B)   | MPT<br>(7B) | Falcon<br>(7B) |
|            | (b) Jetson C      | orin mobil  | e GPU                    |                   | (c) RT                                  | X 4070 laj         | ptop G      | PU             |

### Binarization

- Special form of quantization
- Map weights to {-1,1} or {-1,0,1}
- Train using int8 activations and BitLinear layers

 $\widetilde{W} = \operatorname{Roup}$ 



Abhinav Bhatele, Daniel Nichols (CMSC828G)

## • 1.58-bit models, "The Era of 1-bit LLMs: All Large Language Models are in 1.58 Bits"

What is large potential optimization we can make assuming we have ternary weights?

$$\operatorname{ndClip}(\frac{W}{\gamma+\epsilon}, -1, 1),$$

RoundClip(x, a, b) = max(a, min(b, round(x))),

$$\frac{1}{nm}\sum_{ij}|W_{ij}|.$$



#### **Potential Savings with Binarized Models**

Binarized models are faster and take up less memory





#### **Potential Savings with Binarized Models**

Using exclusively int8 additions is extremely energy efficient









# UNIVERSITY OF MARYLAND