Quantization
Abhinav Bhatele, Daniel Nichols

UNIVERSITY OF

MARYLAND

Announcements

* Interim report for the project is due on April 22
* Sign up for presentation slot (link on Piazza)

* Send data requirements (if needed) to course email by end of day today

S DEPARTMENT OF , : ,
Zﬁwg COMPUTER SCIENCE Abhinav Bhatele, Daniel Nichols (CMSC828G)

Floating Point Numbers

» Computers cannot store arbitrary precision
* Need approximations
* |EEE 754 floating point standard

[fraction|—1

- bit,, -
(_1)81gn Z 21n . 2€—b1aS

n=~0
exponent fraction
sign (11 bit) (52 bit)
T
e @ o
63 52 0

SAE® DEPARTMENT OF : U
88" COMPUTER SCIENCE Abhinav Bhatele, Daniel Nichols (CMSC828G)

44444

Do we need all 64 bits?

» FP64 yields ~16 decimals of precision

* https://en.wikipedia.org/wiki/IEEE_754#Basic_and_interchange formats

* Deep learning does not need all this precision

IEEE half-precision 16-bit float

* We often use fp32,fpl 6, bfl 6, or some combination for training g _exponent (5 bi fraction (10 bit)
O | 0 |1 (1 | O O [i)) I O R O
15 14 10 9 0
bfloatl6
sigln exponent (8 bit) fraction (7 bit)

OO0 (1 |1 |1 (X (1|0 | O [EO RN

15 14 7 6 0

Nvidia's TensorFloat-32 (19 bits)
sigln exponent (8 bit) fraction (10 bit)
I

O (0 (1 |1 |31 (3 |31 (0O | O]t R GRS C) S))

18 17 10 9 0

sRSIp

=% DEPARTMENT OF : - -
2\') COMPUTER SCIENCE Abhinav Bhatele, Daniel Nichols (CMSC828G)

RyLAS

<
\
5

https://en.wikipedia.org/wiki/IEEE_754#Basic_and_interchange_formats

Do we need all 64 bits?

» FP64 yields ~16 decimals of precision

* https://en.wikipedia.org/wiki/IEEE_754#Basic_and_interchange formats

* Deep learning does not need all this precision
* We often use fp32,fpl 6, bfl 6, or some combination for training

* We usually need even less bits for inference!

@@ D N S ENCE Abhinav Bhatele, Daniel Nichols (CMSC828G)
«ugwéo

https://en.wikipedia.org/wiki/IEEE_754#Basic_and_interchange_formats

Quantization

» Map existing weights/activations from higher to lower precision
* ie.fp32->fpl6

* Why quantize!
* Save memory

* Potentially faster compute
* Potentially lower energy consumption

* When not to quantize

* Lack of native hardware support (if performance matters)
* Operations sensitive to precision

@@ D N S ENCE Abhinav Bhatele, Daniel Nichols (CMSC828G)
«ugwéo

Quantization: An Example

» Suppose we want to quantize a model with N parameters from fp32 to 8 bit integers
 fp32 can represent a much wider range of values

* How do we map them to int8? An fp32 float can be written

as an affine transformation of
an 8 bit integer

J

L . .
AN /S We need to clip the quantized
Any issues? L= — _I_ 77 values to some range i.e.
0-255,-127-127, ...
) H)

S DEPARTMENT OF , : ,
58" COMPUTER SCIENCE Abhinav Bhatele, Daniel Nichols (CMSC828G)

44444

Quantization: An Example

* Suppose we want to quantize a model with N parameters from fp32 to 8 bit integers
 fp32 can represent a much wider range of values

* How do we map them to int8? An fp32 float can be written

as an affine transformation of
an 8 bit integer

J

T = pi- (& —n)
L
N /0 Parameters and range do not
Any other issues or L — . _I_ 77 necessarily have to be fixed
improvements! loball
) v globally p

S DEPARTMENT OF , : ,
58" COMPUTER SCIENCE Abhinav Bhatele, Daniel Nichols (CMSC828G)

44444

Types of Quantization

 Post-training quantization

* Quantize the weights of a pre-trained model
* Simple, less compute-intensive

» Quantization-aware Training

* Adapt training process so that quantization is easier (i.e. ensure weights all in particular range)
* Better quantizations at the cost of compute and training complexity

S DEPARTMENT OF , : ,
Zﬁwg COMPUTER SCIENCE Abhinav Bhatele, Daniel Nichols (CMSC828G)

GPTQ

 Layer-wise quantization

.. : — . INWY 12
- Efficient solution to optimization problem argming; [[WX — WX][5.
Inverse Layer Hessian Weight Matrix / Block
(Cholesky Form)
S

block / quantized recursively

computed initially column-by-column

: . unquantized weights
quantized weights ._ t?\at A datg q

;@Q %Egﬁf)%%ﬁg}{og CIENCE Abhinav Bhatele, Daniel Nichols (CMSC828G)
ARy LAS

AWQ: Activation-Aware Weight Quantization

* Quantize weights of an LLM
* Not all weights are equally important

» Based on previous paper “SmoothQuant: Accurate and Efficient Post-Training

outlier X | W |
: : ’ w10 — N 0.1
Quantization for Large Language Models v
2 low effective bits
g IR
=0 . 0 .
hard to quantize VEry easy to quantize
(a) Original
smoothed 1< migrate difficulty .
w1 o 1
>
. \/\/\/\/\N\/ V'\/\f\/\N\/
§
O- 0 - 0 -
easy to quantize easy to quantize
(b) SmoothQuant

SAE* DEPARTMENT OF , : ,
18%;;(95 COMPUTER SCIENCE Abhinav Bhatele, Daniel Nichols (CMSC828G)

Performance Motivation

Quantization can significantly

Most time in spent :
decrease the memory footprint

In generation

10-!
10-2

0 75 150 225 300
Arithmetic Intensity (FLOPs/Byte)

J
J
180 Generation Stage: 103 : tivats
v 1aa At Inten = 4, o o B Weight [Activation
oo.. ATFLOPS (W4A16 Context stage: E 4 T
— 108 Arith. Inten. >= 165 = 79x 1700
@ Context (200 tokens) = 72 = 10 N X
@ Generation (20 tokens) ~< 36 Generation Stage: o 1 1
L Arith. Inten. = 1, 1ITFLOPS (W16A16) o=
0
e
O
=
O
=

Attention FFN

Generation is extremely
memory bound

J

—

qeRSI T
51';x \P

18

k2

“ DEPARTMENT OF)))
W) COMPUTER SCIENCE Abhinav Bhatele, Daniel Nichols (CMSC828G)

RYLBé

Why not quantize activations and weights?

* For lower arithmetic intensities weight-only quantization has a higher ceiling

* For larger scales quantizing both may be beneficial

400]

%) WgtsxActs \SN“?QS,(
o
@) — FP16xFP16 Region
= 300 INT8xINTS8
8 — INT4xFP16
S
s
S 200 | waaie
2 Sweet
P Region
S
< 100
: A

0

0 32 64 96 128 160 192

Computation Intensity (MACs/Element)

QERSIT
e&
Q

=% DEPARTMENT OF : - -
18%595 COMPUTER SCIENCE Abhinav Bhatele, Daniel Nichols (CMSC828G)

Naive Quantization Methods Hurt Model
Performance

They find simple methods like
RTN give subpar weights

44 g QW)

-1.8

2.1

3.4

-0.1

0.3

Q

|.7

0.5

-0.6

-1.9

-3.9

SUr
S °; DEPARTMENT OF

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Potential Weight-Aware Solution

Use LI or L2 norm to find
most important weights

Can we identify
important weights and
keep them in fpl6?

-1.8

2.1

3.4

-0.1

0.3

Q

QW)

-1 3

|.7

0.5

-0.6

-1.9

-3.9

J

ngSI TP
5&@0&
18 56
.
RyLM

DEPARTMENT OF

COMPUTER SCIENCE

Abhinav Bhatele, Daniel Nichols (CMSC828G)

0.1 0.3 y
2 0.5 y
2 N 4

This also doesn’t help much
In practice

J

Use Activations to Determine Important

Weights

Using corresponding
activation magnitudes gives
much better quantizations

-1.8

2.1

3.4

-0.1

0.3

- =
—_——
—-—
-

|.7

0.5

-0.6

-1.9

-3.9

SUr
S °:6 DEPARTMENT OF

444444

Abhinav Bhatele, Daniel Nichols (CMSC828G)

QW)

3

-0.1

0.3

-1.2

4

This would be really difficult
to implement and optimize!

Y,

Observation: Scaling Weights

* What happens when we scale particular weights before quantization?

Forward pass and forward

y=we, Y= Q(’IU)ZE pass with quantization
P N wy L\ max (w)
inear quantization : Q(w) — . Round (K) , — N1
L What h h
Q(w : S) — N at happens when we
S scale by s>/?)

S DEPARTMENT OF , : ,
58" COMPUTER SCIENCE Abhinav Bhatele, Daniel Nichols (CMSC828G)

44444

Observation: Scaling Weights

* What happens when we scale particular weights before g

y=wx, y=Qw)x
Observation |: Expected error

Q('w) = A - Round (E) of rounding is ~0.25;

uantization?

A independent of wands |
max (|w|)
— 2N =1 X , ws\
w-Ss)- | — :A-Round(—)-—
Q) (5) A/ s

Observation 2: Scaling a single or
small subset of w values has little
impact on A. A’ ~ AJ

Observation 3:x and A are fpl6
and have no quantization error

y,

; N /Q](DZECP)?\I/EI\[AJ%L\IETROSFCIENCE Abhinav Bhatele, Daniel Nichols (CMSC828G)

ﬂﬂﬂﬂﬂ

Observation: Scaling Weights

* What happens when we scale particular weights before quantization?

y=wx, y=Qw)x

Q(w) = A - Round (%) Err(Q(w)z) = A - RoundErr (%) 1
n) e B (QUw-3) (7)) = A RoundEer (7) -5

we can represent the
quantization errors

Err (Q(w - s) (£)) A’ 1

Scaled term has lower

relative error for s>/! FErr (Q(w)) A . S

J

N\
N\

S DEPARTMENT OF , : ,
58" COMPUTER SCIENCE Abhinav Bhatele, Daniel Nichols (CMSC828G)

ﬂﬂﬂﬂﬂ

But Does It Work?

* Try different s in practice

As s gets larger the A/ ~ A
assumption breaks down

y
OPT-6.7B s=1s5s=125s=15s=2 s=4
proportion/of A A 0% 28% 44% 8.2% 21.2%
average A /A 1 1.005 1.013 1.038 1.213
average %, x> 1 0.804 0.676 0.519 0.303
Wiki-2 PPL 23.54 12.87 1248 11.92 12.36

SUr
S °; DEPARTMENT OF

44444

In practice, some s~ gives the
best modeling performance

The relative error

does keep getting
smaller

v,

y,

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Use Activations to Determine Important

Weights

Scale weights based on
activation magnitude before

quantization

J

-1.8

2.1

3.4

-0.1

0.3

|.7

0.5

-0.6

-1.9

SUr
S °; DEPARTMENT OF

444444

- =
—_—_
—-—
-

Use search/sweep over
calibration dataset to find
optimal scaling parameters |

Abhinav Bhatele, Daniel Nichols (CMSC828G)

AWQ Results

AWQ is performs better or near |%
fp16, but is much faster and more
memory efficient

J
OPT (PPL|) 1.3B 2B 6.7B 13B 30B
FP16 14.62 1247 10.86 10.13 9.56
RTN 119.47 298.00 23.54 46.04 18.80
1% FP16 16.91 13.69 11.39 1043 9.85
s =2 18.63 1494 1192 10.80 10.32
AWQ 16.32 13.58 11.39 10.56 9.77

A fixed value of s gives decent results,
but it’s better to select dynamically

S DEPARTMENT OF , : ,
58" COMPUTER SCIENCE Abhinav Bhatele, Daniel Nichols (CMSC828G)

ﬂﬂﬂﬂﬂ

AWQ vyields better perplexity than
other SotA approaches (GPTQ%)

AWQ Comparison with Other Methods

J
PPL| Llama-2 LLaMA

7B 13B 70B 7B 13B 30B 65B

FP16 - 5.47 4.88 3.32 5.68 5.09 4.10 3.53

RTN 6.66 5.52 3.98 7.01 5.88 4.88 4.24

INT3 GPTQ 6.43 5.48 3.88 8.81 5.66 4.88 4.17

g128 GPTQ-R 6.42 5.41 3.86 6.53 5.64 4.74 4.21

AWQ 6.24 5.32 3.74 6.35 5.52 4.61 3.95

RTN 5.73 4.98 3.46 5.96 5.25 4.23 3.67

INT4 GPTQ 5.69 4.98 3.42 6.22 5.23 4.24 3.66

g128 GPTQ-R 5.63 4.99 343 5.83 5.20 4.22 3.66

AWQ 5.60 4.97 3.41 5.78 5.19 4.21 3.62

§@ DEPARTMENT OF
@d%éo COMPUTER SCIENCE

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Still worse than fpl6

WV,

AWQ Downstream Tasks

» Math and coding downstream tasks

AWQ performance is close
to fpl 6 performance

MBPP (7B) pass@] pass@10 GSMSK 7B 13B 70B

FP16 38.53 49.77 FP16 13.87 26.16 56.41
RTN 37.51 4849 RTN 11.07 21.23 53.98
GPTQ 31.97 4475 GPTQ 12.13 24.26 56.03
AWQ 40.64 4925 AWQ 13.57 25.25 56.40

S DEPARTMENT OF , : ,
58" COMPUTER SCIENCE Abhinav Bhatele, Daniel Nichols (CMSC828G)

44444

AWQ Runtime Results

» TinyChat benchmark for edge devices

AWQ is faster and saves on
memory

S

Huggingface (FP16) [Ours (FP16)

B Ours (AWQ, W4A16)

200 40 60 ﬁ
g ‘ / - e
2100 20 30 & S S e
o FPl6 FPl6 FP16 O < O O
= 50 10 15 — — — —
2) OOM OOM [) OOM ; A o o o
[2 Llama-2 Llama-2 MPT MPT Falcon Llama-2 Llama-2 MPT MPT Falcon Llama-2 Llama-2 MPT Falcon

(7B) (13B) (7B) (30B) (7B) (7B) (13B) (7B) (30B) (7B) (7B) (13B) (7B) (7B)
(a) RTX 4090 desktop GPU (b) Jetson Orin mobile GPU (c) RTX 4070 laptop GPU

g% wRST T)'
\
5’? X

* DEPARTMENT OF : : :
" COMPUTER SCIENCE Abhinav Bhatele, Daniel Nichols (CMSC828G)

YLE»é

Binarization

» Special form of quantization
* Map weights to {-1,1} or {-1,0,1}
» |.58-bit models,”“The Era of |-bit LLMs:All Large Language Models are in 1.58 Bits”

* Train using int8 activations and BitLinear layers
What is large potential optimization

we can make assuming we have
ternary weights!?

W,

— 14

W = RoundCli ,—1,1),
p(7+€)

RoundClip(x, a,b) = max(a, min(b, round(x))),

1
=) W 1.
Y nm%:‘]I

S DEPARTMENT OF , : ,
zﬁwg COMPUTER SCIENCE Abhinav Bhatele, Daniel Nichols (CMSC828G)

Potential Savings with Binarized Models

Binarized models are faster
and take up less memory

10%: wess BitNet b1.58
| s BitNet b1.58 102 LR OX
| w—]| aMA 4.10x | m—LaMA 7.16x
—)
= o
NET: S >
g0 S 101
8 ‘)]
C S
1.3B 3B 7B 13B 70B 1.3B 3B 7B 13B 70B
Model Size Model Size

{S]ERSITP
Q

18

k2

* DEPARTMENT OF , : :
W), COMPUTER SCIENCE Abhinav Bhatele, Daniel Nichols (CMSC828G)

RYLExé

Potential Savings with Binarized Models

Using exclusively int8 additions is
extremely energy efficient

1g1) = BitNet b1.58
0.51 mem INT8 Add ; | m— LLaMA
B FP16 Add ; .
=0.4- FP16 Mul |
— 0.
@ = 10 |
O 0.3 qE)’
§ 71.4x 2
= |
1.7
uc_] 0.2 10—1_: - X
& 1 [18.6x
-
0.1
0.0 v | 138 3B 7B 13B 70B
' BitNet b1.58 LLaMA Model Size

ex‘lﬁkslrl'
)

] COMPUTER SCIENCE Abhinav Bhatele, Daniel Nichols (CMSC828G)

TRyLAS

T

U

)
UNIVERSITY OF

MARYLAND

