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Announcements

2

• Interim report for the project is due on April 22

• Sign up for presentation slot (link on Piazza)

• Send data requirements (if needed) to course email by end of day today
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Floating Point Numbers
• Computers cannot store arbitrary precision
• Need approximations
• IEEE 754 floating point standard
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Do we need all 64 bits?
• FP64 yields ~16 decimals of precision

• https://en.wikipedia.org/wiki/IEEE_754#Basic_and_interchange_formats 

• Deep learning does not need all this precision
• We often use fp32, fp16, bf16, or some combination for training

https://en.wikipedia.org/wiki/IEEE_754#Basic_and_interchange_formats
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Do we need all 64 bits?
• FP64 yields ~16 decimals of precision

• https://en.wikipedia.org/wiki/IEEE_754#Basic_and_interchange_formats 

• Deep learning does not need all this precision
• We often use fp32, fp16, bf16, or some combination for training

• We usually need even less bits for inference!

https://en.wikipedia.org/wiki/IEEE_754#Basic_and_interchange_formats
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Quantization
• Map existing weights/activations from higher to lower precision

• i.e. fp32 -> fp16
• Why quantize?

• Save memory
• Potentially faster compute
• Potentially lower energy consumption

• When not to quantize
• Lack of native hardware support (if performance matters)
• Operations sensitive to precision
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Quantization: An Example
• Suppose we want to quantize a model with N parameters from fp32 to 8 bit integers

• fp32 can represent a much wider range of values

• How do we map them to int8? An fp32 float can be written 
as an affine transformation of 

an 8 bit integer

Any issues?
We need to clip the quantized 

values to some range i.e. 
0-255, -127-127, …
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Quantization: An Example
• Suppose we want to quantize a model with N parameters from fp32 to 8 bit integers

• fp32 can represent a much wider range of values

• How do we map them to int8? An fp32 float can be written 
as an affine transformation of 

an 8 bit integer

Any other issues or 
improvements?

Parameters and range do not 
necessarily have to be fixed 

globally
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Types of Quantization
• Post-training quantization

• Quantize the weights of a pre-trained model
• Simple, less compute-intensive

• Quantization-aware Training
• Adapt training process so that quantization is easier (i.e. ensure weights all in particular range)
• Better quantizations at the cost of compute and training complexity
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GPTQ
• Layer-wise quantization
• Efficient solution to optimization problem
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AWQ: Activation-Aware Weight Quantization
• Quantize weights of an LLM

• Not all weights are equally important

• Based on previous paper “SmoothQuant: Accurate and Efficient Post-Training 

Quantization for Large Language Models” 
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Performance Motivation

Most time in spent 
in generation

Generation is extremely 
memory bound

Quantization can significantly 
decrease the memory footprint
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Why not quantize activations and weights?
• For lower arithmetic intensities weight-only quantization has a higher ceiling

• For larger scales quantizing both may be beneficial
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Naive Quantization Methods Hurt Model 
Performance
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They find simple methods like 
RTN give subpar weights
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Potential Weight-Aware Solution
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Can we identify 
important weights and 

keep them in fp16? 

Use L1 or L2 norm to find 
most important weights

This also doesn’t help much 
in practice
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Use Activations to Determine Important 
Weights
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Using corresponding 
activation magnitudes gives 
much better quantizations

This would be really difficult 
to implement and optimize!
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Observation: Scaling Weights
• What happens when we scale particular weights before quantization?

Forward pass and forward 
pass with quantization

Linear quantization

What happens when we 
scale by s>1?
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Observation: Scaling Weights
• What happens when we scale particular weights before quantization?

Observation 1: Expected error 
of rounding is ~0.25; 

independent of w and s

Observation 2: Scaling a single or 
small subset of w values has little 

impact on Δ.

Observation 3: x and Δ are fp16 
and have no quantization error  
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Observation: Scaling Weights
• What happens when we scale particular weights before quantization?

Based on observation 3 
we can represent the 
quantization errors

Scaled term has lower 
relative error for s>1!
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But Does It Work?
• Try different s in practice

As s gets larger the
assumption breaks down 

The relative error 
does keep getting 

smaller

In practice, some s* gives the 
best modeling performance
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Use Activations to Determine Important 
Weights
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Scale weights based on 
activation magnitude before 

quantization

Use search/sweep over 
calibration dataset to find 
optimal scaling parameters
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AWQ Results
AWQ is performs better or near 1% 

fp16, but is much faster and more 
memory efficient

A fixed value of s gives decent results, 
but it’s better to select dynamically
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AWQ Comparison with Other Methods
AWQ yields better perplexity than 
other SotA approaches (GPTQ*)

Still worse than fp16
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AWQ Downstream Tasks
• Math and coding downstream tasks

AWQ performance is close 
to fp16 performance
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AWQ Runtime Results
• TinyChat benchmark for edge devices

AWQ is faster and saves on 
memory
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Binarization
• Special form of quantization
• Map weights to {-1,1} or {-1,0,1}
• 1.58-bit models, “The Era of 1-bit LLMs: All Large Language Models are in 1.58 Bits”
• Train using int8 activations and BitLinear layers

What is large potential optimization 
we can make assuming we have 

ternary weights?
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Potential Savings with Binarized Models

Binarized models are faster 
and take up less memory
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Potential Savings with Binarized Models

Using exclusively int8 additions is 
extremely energy efficient




