
Quantization
Abhinav Bhatele, Daniel Nichols

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Announcements

2

• Interim report for the project is due on April 22

• Sign up for presentation slot (link on Piazza)

• Send data requirements (if needed) to course email by end of day today

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Floating Point Numbers
• Computers cannot store arbitrary precision
• Need approximations
• IEEE 754 floating point standard

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Do we need all 64 bits?
• FP64 yields ~16 decimals of precision

• https://en.wikipedia.org/wiki/IEEE_754#Basic_and_interchange_formats

• Deep learning does not need all this precision
• We often use fp32, fp16, bf16, or some combination for training

https://en.wikipedia.org/wiki/IEEE_754#Basic_and_interchange_formats

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Do we need all 64 bits?
• FP64 yields ~16 decimals of precision

• https://en.wikipedia.org/wiki/IEEE_754#Basic_and_interchange_formats

• Deep learning does not need all this precision
• We often use fp32, fp16, bf16, or some combination for training

• We usually need even less bits for inference!

https://en.wikipedia.org/wiki/IEEE_754#Basic_and_interchange_formats

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Quantization
• Map existing weights/activations from higher to lower precision

• i.e. fp32 -> fp16
• Why quantize?

• Save memory
• Potentially faster compute
• Potentially lower energy consumption

• When not to quantize
• Lack of native hardware support (if performance matters)
• Operations sensitive to precision

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Quantization: An Example
• Suppose we want to quantize a model with N parameters from fp32 to 8 bit integers

• fp32 can represent a much wider range of values

• How do we map them to int8? An fp32 float can be written
as an affine transformation of

an 8 bit integer

Any issues?
We need to clip the quantized

values to some range i.e.
0-255, -127-127, …

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Quantization: An Example
• Suppose we want to quantize a model with N parameters from fp32 to 8 bit integers

• fp32 can represent a much wider range of values

• How do we map them to int8? An fp32 float can be written
as an affine transformation of

an 8 bit integer

Any other issues or
improvements?

Parameters and range do not
necessarily have to be fixed

globally

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Types of Quantization
• Post-training quantization

• Quantize the weights of a pre-trained model
• Simple, less compute-intensive

• Quantization-aware Training
• Adapt training process so that quantization is easier (i.e. ensure weights all in particular range)
• Better quantizations at the cost of compute and training complexity

Abhinav Bhatele, Daniel Nichols (CMSC828G)

GPTQ
• Layer-wise quantization
• Efficient solution to optimization problem

Abhinav Bhatele, Daniel Nichols (CMSC828G)

AWQ: Activation-Aware Weight Quantization
• Quantize weights of an LLM

• Not all weights are equally important

• Based on previous paper “SmoothQuant: Accurate and Efficient Post-Training

Quantization for Large Language Models”

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Performance Motivation

Most time in spent
in generation

Generation is extremely
memory bound

Quantization can significantly
decrease the memory footprint

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Why not quantize activations and weights?
• For lower arithmetic intensities weight-only quantization has a higher ceiling

• For larger scales quantizing both may be beneficial

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Naive Quantization Methods Hurt Model
Performance

-1.8 2.1 3.4

-0.1 0.3 -1.2

1.7 0.5 -0.6

-1.9 -1.0 -3.9

-1 2 3

0 0 -1

2 1 -1

-2 -1 -4

Q

W Q(W)

They find simple methods like
RTN give subpar weights

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Potential Weight-Aware Solution

-1.8 2.1 3.4

-0.1 0.3 -1.2

1.7 0.5 -0.6

-1.9 -1.0 -3.9

-1 2 3

-0.1 0.3 -1

2 0.5 -1

-2 -1 -4

Q

W Q(W)

Can we identify
important weights and

keep them in fp16?

Use L1 or L2 norm to find
most important weights

This also doesn’t help much
in practice

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Use Activations to Determine Important
Weights

-1.8 2.1 3.4

-0.1 0.3 -1.2

1.7 0.5 -0.6

-1.9 -1.0 -3.9

-1 2 3

-0.1 0.3 -1.2

2 1 -1

-2 -1 -4

Q

W Q(W)

A

Using corresponding
activation magnitudes gives
much better quantizations

This would be really difficult
to implement and optimize!

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Observation: Scaling Weights
• What happens when we scale particular weights before quantization?

Forward pass and forward
pass with quantization

Linear quantization

What happens when we
scale by s>1?

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Observation: Scaling Weights
• What happens when we scale particular weights before quantization?

Observation 1: Expected error
of rounding is ~0.25;

independent of w and s

Observation 2: Scaling a single or
small subset of w values has little

impact on Δ.

Observation 3: x and Δ are fp16
and have no quantization error

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Observation: Scaling Weights
• What happens when we scale particular weights before quantization?

Based on observation 3
we can represent the
quantization errors

Scaled term has lower
relative error for s>1!

Abhinav Bhatele, Daniel Nichols (CMSC828G)

But Does It Work?
• Try different s in practice

As s gets larger the
assumption breaks down

The relative error
does keep getting

smaller

In practice, some s* gives the
best modeling performance

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Use Activations to Determine Important
Weights

-1.8 2.1 3.4

-0.1 0.3 -1.2

1.7 0.5 -0.6

-1.9 -1.0 -3.9

-1 2 3

-1 1 -2

4 2 -2

-2 -1 -4

Q

W Q(W)

A

Scale weights based on
activation magnitude before

quantization

Use search/sweep over
calibration dataset to find
optimal scaling parameters

Abhinav Bhatele, Daniel Nichols (CMSC828G)

AWQ Results
AWQ is performs better or near 1%

fp16, but is much faster and more
memory efficient

A fixed value of s gives decent results,
but it’s better to select dynamically

Abhinav Bhatele, Daniel Nichols (CMSC828G)

AWQ Comparison with Other Methods
AWQ yields better perplexity than
other SotA approaches (GPTQ*)

Still worse than fp16

Abhinav Bhatele, Daniel Nichols (CMSC828G)

AWQ Downstream Tasks
• Math and coding downstream tasks

AWQ performance is close
to fp16 performance

Abhinav Bhatele, Daniel Nichols (CMSC828G)

AWQ Runtime Results
• TinyChat benchmark for edge devices

AWQ is faster and saves on
memory

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Binarization
• Special form of quantization
• Map weights to {-1,1} or {-1,0,1}
• 1.58-bit models, “The Era of 1-bit LLMs: All Large Language Models are in 1.58 Bits”
• Train using int8 activations and BitLinear layers

What is large potential optimization
we can make assuming we have

ternary weights?

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Potential Savings with Binarized Models

Binarized models are faster
and take up less memory

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Potential Savings with Binarized Models

Using exclusively int8 additions is
extremely energy efficient

