
Optimizing data movement
Abhinav Bhatele, Daniel Nichols

Systems for Machine Learning (CMSC828G)

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Annoucements

• Interim report due today

• Presentation slots: will be emailed soon

• Students who haven’t presented in class yet: Submit a 5-minute video on a paper of
your choice

• Due date: May 1

• If you want to do this in groups of two, that is okay

• Extra credit, will be posted on April 23 and due on May 7

2

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Various types of data movement

• Between CPU and GPU (host-device transfers)

• Within the GPU memory hierarchy

• Between storage and memory (disk I/O)

• Between devices in parallel training (network communication)

• These can impact: computation time, scaling, and energy efficiency

3

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Strategies to optimize data movement
• On device:

• Better data layouts, pre-fetching

• Caching frequently used data: KV cache

• I/O

• pre-fetching, overlapping using asynchronous I/O

• using parallel data loaders

• Network communication

• overlapping using asynchronous I/O

• optimized collectives

4

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Strategies to optimize data movement

• Send data in reduced precision

• Only send non-zeros

• Other approximation techniques

5

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Why optimize collectives?

6

, , Singh et al.

system’s peak bandwidth. While RCCL achieves high bandwidth
at small scales, its performance deteriorates sharply as we scale to
hundreds or thousands of GPUs. Figure 1 illustrates these issues by
benchmarking the all-gather collective on Frontier with two output
bu!er sizes: 64 and 128 MB. For both message sizes, the ideal scaling
behavior is a "at horizontal line. However, we observe signi#cant
performance degradation in both libraries beyond 256 processes,
highlighting their limitations and making them suboptimal for
large-scale training workloads.

This work introduces PCCL, the Performant Collective Com-
munication Library, designed to accelerate collective operations -
speci#cally all-gathers and reduce-scatters - for parallel deep learn-
ing workloads. PCCL includes highly optimized implementations
tailored for message sizes in the tens to hundreds of megabytes,
which are commonly encountered in large-scale training. Our de-
sign focuses on alleviating key performance bottlenecks in Cray-
MPICH and RCCL by leveraging the strengths of both: harness-
ing the system’s networking and accelerated computing resources
while optimizing for latency-bound scenarios that emerge at ex-
treme scale.

With all of these optimizations in place, our implementations of
all-gather and reduce-scatter achieve signi#cant speedups over both
RCCL and Cray-MPICH. For instance, on 2048 GPUs of Frontier (256
nodes), our all-gather implementation delivers a 6–33→ speedup
over RCCL and a 28–70→ speedup over Cray-MPICH. These im-
provements also seamlessly translate to end-to-end training perfor-
mance. On 1024 GCDs of Frontier, replacing RCCL with PCCL for
collective communication results in substantial training speedups –
60% for a 7B parameter model and 40% for a 13B parameter model.
Our optimized collectives thus pave the way for scalable, high-
performance training of large-scale deep learning models on next-
generation GPU supercomputers.

• We analyze the limitations of existing communication li-
braries, Cray-MPICH and RCCL, for all-gather and reduce-
scatter collectives in parallel deep learning workloads.

• We develop optimized implementations of these collectives
in PCCL, with a focus on e!ectively utilizing system re-
sources and ensuring scalability in latency bound scenarios.

• We conduct end-to-end benchmarking of large-scale LLM
training workloads to validate the practical bene#ts of our
optimizations, demonstrating signi#cant speedups in train-
ing throughput.

2 Background
In this section, we provide relevant background on parallel or dis-
tributed deep learning with a focus on the role of collective commu-
nication in the functioning of state-of-the art parallel deep learning
frameworks.

2.1 Parallel Deep Learning and Collective
Communication

While several categories of parallelism exist in deep learning (tensor
parallelism [20], pipeline parallelism [15], expert parallelism [18]),
this work focus on sharded data parallelism, a widely used approach
for large scale training [19, 27]. In this paradigm, model parameters

and gradients are partitioned (or "sharded") across GPUs, which sig-
ni#cantly reduces memory requirements and allows for the training
of extremely large models. Two critical collective communication
operations – all-gather and reduce-scatter – play a central role in
sharded data parallelism. These operations aggregate distributed
data across GPUs: the all-gather operation collects model param-
eters from all shards to form a complete copy, while the reduce-
scatter operation performs a reduction and distributes gradients
across participating processes. In Figure 2, we plot the all-gather
and reduce-scatter message sizes for three frameworks that support
sharded data parallelism – FSDP [27], Deepspeed ZeRO-3 [19], and
AxoNN [21]. Notice how the message sizes across these three frame-
works are in the tens to hundreds of megabytes, even becoming
more than a gigabyte for larger models.

� ��� ��� 	�� ��� ���� ���� �	��
�$��!�' ,����)"��&�$��%�&�"�(�&'� #�� !! $#'�

��

��

�	

���

�
�

��

���	

��	�

	�
�

��
�

�)
���

&�
'

,�
'�

��
��

�)���&�' ,�'�$���$!!��(*�'� #�%�&�!!�!����%�!��&# #�

�+$��
������
����

Figure 2: Distribution of all-gather and reduce-scatter mes-
sage sizes for several deep learning frameworks for a range
of transformer [25] model sizes. The y-axis represents input
bu!er sizes for all-gathers but output bu!er sizes for reduce-
scatters.

2.2 Algorithms for All-Gathers and
Reduce-Scatters

E$cient implementations of all-gather and reduce-scatter opera-
tions are critical for sharded data parallelism. In this work, we build
on several well-established algorithms and introduce enhancements
to improve performance and scalability.

Ring: The ring algorithm is a popular method for implementing
collective communications due to its simplicity and e$ciency in
certain network topologies. In a ring-based all-gather or reduce-
scatter, each process communicates with its immediate neighbors
in a circular fashion. While e!ective at moderate scales and large
message sizes, the ring algorithm can su!er from ine$ciencies at
larger scales due to its latency term being linearly proportional to
the number of processes. For example, the communication time of
a ring all-gather can be modeled as

𝐿ring = 𝑀 → (𝑁 ↑ 1) + 𝑂 → 𝑁 ↑ 1
𝑁

𝑃

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Why optimize collectives?

6

, , Singh et al.

system’s peak bandwidth. While RCCL achieves high bandwidth
at small scales, its performance deteriorates sharply as we scale to
hundreds or thousands of GPUs. Figure 1 illustrates these issues by
benchmarking the all-gather collective on Frontier with two output
bu!er sizes: 64 and 128 MB. For both message sizes, the ideal scaling
behavior is a "at horizontal line. However, we observe signi#cant
performance degradation in both libraries beyond 256 processes,
highlighting their limitations and making them suboptimal for
large-scale training workloads.

This work introduces PCCL, the Performant Collective Com-
munication Library, designed to accelerate collective operations -
speci#cally all-gathers and reduce-scatters - for parallel deep learn-
ing workloads. PCCL includes highly optimized implementations
tailored for message sizes in the tens to hundreds of megabytes,
which are commonly encountered in large-scale training. Our de-
sign focuses on alleviating key performance bottlenecks in Cray-
MPICH and RCCL by leveraging the strengths of both: harness-
ing the system’s networking and accelerated computing resources
while optimizing for latency-bound scenarios that emerge at ex-
treme scale.

With all of these optimizations in place, our implementations of
all-gather and reduce-scatter achieve signi#cant speedups over both
RCCL and Cray-MPICH. For instance, on 2048 GPUs of Frontier (256
nodes), our all-gather implementation delivers a 6–33→ speedup
over RCCL and a 28–70→ speedup over Cray-MPICH. These im-
provements also seamlessly translate to end-to-end training perfor-
mance. On 1024 GCDs of Frontier, replacing RCCL with PCCL for
collective communication results in substantial training speedups –
60% for a 7B parameter model and 40% for a 13B parameter model.
Our optimized collectives thus pave the way for scalable, high-
performance training of large-scale deep learning models on next-
generation GPU supercomputers.

• We analyze the limitations of existing communication li-
braries, Cray-MPICH and RCCL, for all-gather and reduce-
scatter collectives in parallel deep learning workloads.

• We develop optimized implementations of these collectives
in PCCL, with a focus on e!ectively utilizing system re-
sources and ensuring scalability in latency bound scenarios.

• We conduct end-to-end benchmarking of large-scale LLM
training workloads to validate the practical bene#ts of our
optimizations, demonstrating signi#cant speedups in train-
ing throughput.

2 Background
In this section, we provide relevant background on parallel or dis-
tributed deep learning with a focus on the role of collective commu-
nication in the functioning of state-of-the art parallel deep learning
frameworks.

2.1 Parallel Deep Learning and Collective
Communication

While several categories of parallelism exist in deep learning (tensor
parallelism [20], pipeline parallelism [15], expert parallelism [18]),
this work focus on sharded data parallelism, a widely used approach
for large scale training [19, 27]. In this paradigm, model parameters

and gradients are partitioned (or "sharded") across GPUs, which sig-
ni#cantly reduces memory requirements and allows for the training
of extremely large models. Two critical collective communication
operations – all-gather and reduce-scatter – play a central role in
sharded data parallelism. These operations aggregate distributed
data across GPUs: the all-gather operation collects model param-
eters from all shards to form a complete copy, while the reduce-
scatter operation performs a reduction and distributes gradients
across participating processes. In Figure 2, we plot the all-gather
and reduce-scatter message sizes for three frameworks that support
sharded data parallelism – FSDP [27], Deepspeed ZeRO-3 [19], and
AxoNN [21]. Notice how the message sizes across these three frame-
works are in the tens to hundreds of megabytes, even becoming
more than a gigabyte for larger models.

� ��� ��� 	�� ��� ���� ���� �	��
�$��!�' ,����)"��&�$��%�&�"�(�&'� #�� !! $#'�

��

��

�	

���

�
�

��

���	

��	�

	�
�

��
�

�)
���

&�
'

,�
'�

��
��

�)���&�' ,�'�$���$!!��(*�'� #�%�&�!!�!����%�!��&# #�

�+$��
������
����

Figure 2: Distribution of all-gather and reduce-scatter mes-
sage sizes for several deep learning frameworks for a range
of transformer [25] model sizes. The y-axis represents input
bu!er sizes for all-gathers but output bu!er sizes for reduce-
scatters.

2.2 Algorithms for All-Gathers and
Reduce-Scatters

E$cient implementations of all-gather and reduce-scatter opera-
tions are critical for sharded data parallelism. In this work, we build
on several well-established algorithms and introduce enhancements
to improve performance and scalability.

Ring: The ring algorithm is a popular method for implementing
collective communications due to its simplicity and e$ciency in
certain network topologies. In a ring-based all-gather or reduce-
scatter, each process communicates with its immediate neighbors
in a circular fashion. While e!ective at moderate scales and large
message sizes, the ring algorithm can su!er from ine$ciencies at
larger scales due to its latency term being linearly proportional to
the number of processes. For example, the communication time of
a ring all-gather can be modeled as

𝐿ring = 𝑀 → (𝑁 ↑ 1) + 𝑂 → 𝑁 ↑ 1
𝑁

𝑃

The Big Send-o!: High Performance Collectives on GPU-based
Supercomputers

Siddharth Singh
Department of Computer Science,

University of Maryland
College Park, USA
ssingh37@umd.edu

Mahua Singh
Dept. of Computer Science and Engg.,

Indian Institute of Technology
Guwahati, India

s.mahua@iitg.ac.in

Abhinav Bhatele
Department of Computer Science,

University of Maryland
College Park, USA
bhatele@cs.umd.edu

Abstract
We evaluate the current state of collective communication on GPU-
based supercomputers for large language model (LLM) training
at scale. Existing libraries such as RCCL and Cray-MPICH exhibit
critical limitations on systems such as Frontier – Cray-MPICH un-
derutilizes network and compute resources, while RCCL su!ers
from severe scalability issues. To address these challenges, we in-
troduce PCCL, a communication library with highly optimized
implementations of all-gather and reduce-scatter operations tai-
lored for distributed deep learning workloads. PCCL is designed
to maximally utilize all available network and compute resources
and to scale e"ciently to thousands of GPUs. It achieves substan-
tial performance improvements, delivering 6–33→ speedups over
RCCL and 28–70→ over Cray-MPICH for all-gather on 2048 GCDs
of Frontier. These gains translate directly to end-to-end perfor-
mance: in large-scale GPT-3-style training, PCCL provides up to
60% and 40% speedups over RCCL for 7B and 13B parameter models,
respectively.

1 Introduction
In the last few years, large language models (LLMs) have resulted in
signi#cant advancements in natural language processing [6, 12, 22].
These models are extremely adept at generating and manipulating
text with high #delity and have facilitated automation in tasks such
as text summarization, translation, code generation, and personal
learning. At the core of these advancements are two key factors:
the use of large-scale datasets for training and the development
of models with billions of parameters. Both aspects are crucial for
enabling LLMs to achieve their remarkable performance but come
with signi#cant computational demands. Training these models
requires extensive hardware resources, often involving thousands
to tens of thousands of GPUs to handle the immense computational
load. For instance, LLaMA 3, a model with 405 billion parameters,
was trained using 16,000 H100 GPUs [12]!

At large GPU counts, communication quickly becomes the pri-
mary bottleneck to e"cient scaling. While modern GPUs lever-
age specialized tensor cores to accelerate matrix operations in

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro#t or commercial advantage and that copies bear this notice and the full citation
on the #rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci#c permission
and/or a fee. Request permissions from permissions@acm.org.
,
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/2018/06
https://doi.org/XXXXXXX.XXXXXXX

LLMs, these speedups increase the relative cost of communica-
tion. Advanced parallel training algorithms – such as ZeRO [19]
and FSDP [27] – depend heavily on collective operations like all-
gather and reduce-scatter, which frequently move tens to hundreds
of megabytes per call. As both the number of GPUs and message
sizes grow, e"ciently handling this communication becomes in-
creasingly di"cult. To support the demands of large-scale deep
learning, communication libraries must therefore be highly scal-
able and speci#cally optimized for these workloads.

In this work, we focus onOLCF’s Frontier, anAMDMI250X based
supercomputer and evaluate the e"cacy of existing communication
libraries for collective performance in deep learning. Speci#cally,
we examine all-gather and reduce-scatter collectives, which are
widely used in distributed training frameworks like ZeRO and FSDP.
On Frontier, users have two main choices for the communication
library: Cray-MPICH, an MPICH-based implementation of MPI
optimized for HPC workloads, and RCCL, AMD’s ROCm Collective
Communication Library designed for GPU-centric communication.
We demonstrate that both libraries exhibit unique shortcomings on
Frontier, leading to ine"ciencies that hinder scalability and make
them suboptimal for large-scale LLM training.

� �� �� �	 ��� �
�
�� ���	 ��	�
�,%��)�' �()'��**�*�����*�

���

���

���

�-
��

,+
#'

&�
+#%

��
�%

*�

$$�!�+"�)�(�) ')%�&��� ')��)�.��������&���������)'&+#�)�

�)�.���������������
�)�.���������	����

�������������
�������	����

Figure 1: Performance comparison of all-gather using Cray-
MPICH vs. RCCL on Frontier for two output bu!er sizes of 64
and 128 MB. The ideal scaling behavior ("at horizontal line)
is not achieved by either library, highlighting their limited
scalability at increasing GCD counts.

Cray-MPICH fails to fully utilize the available compute and
network resources on each node, sustaining only a fraction of the

