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Annoucements

® |nterim report due today
® Presentation slots: will be emailed soon

e Students who haven’t presented in class yet: Submit a 5-minute video on a paper of
your choice

* Due date: May |

* |f you want to do this in groups of two, that is okay

e Extra credit, will be posted on April 23 and due on May 7
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Various types of data movement

e Between CPU and GPU (host-device transfers)

e Within the GPU memory hierarchy

® Between storage and memory (disk 1/O)

® Between devices in parallel training (network communication)

® These can impact: computation time, scaling, and energy efficiency
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Strategies to optimize data movement

e On device:

e Better data layouts, pre-fetching

e Caching frequently used data: KV cache

e |/O

e pre-fetching, overlapping using asynchronous I/O

e using parallel data loaders

e Network communication

e overlapping using asynchronous I/O

e optimized collectives
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Strategies to optimize data movement

® Send data in reduced precision
® Only send non-zeros

o Other approximation techniques
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Why optimize collectives?

Buffer sizes of collectives in parallel deep learning
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Why optimize collectives?

All-gather performance for Cray-MPICH and RCCL (Frontier) Buffer sizes of collectives in parallel deep learning
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