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Annoucements

• Students who haven’t presented in class: submit slides to the same grade scope 
assignment with a YouTube or Google Drive link to the video

• Due date: May 1

• Extra credit is due on May 7

• No extensions, you cannot use the late penalty for this assignment

• It is optional
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Graph Neural Networks

• Drug discovery

• Fraud detection

• Route optimization

• Recommendation 
systems
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https://blogs.nvidia.com/blog/what-are-graph-neural-networks/
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Tasks on graphs

• Node-level: predicting the class of individual nodes

• Edge-level: determine if an edge exist or predict the type of edge

• Graph-level: even categorize entire graphs
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Graph Convolution Network (GCN) layer

• Aggregation

• Combination

• Activation
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HLi = SpMM(A, FLi)

QLi = SGEMM(HLi, WLi)

FLi+1 = σ(QLi)
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Different approximations
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Figure 1: Di!erent paradigms of GNN training that can be combined together, shown in four quadrants. Each quadrant shows a
sample graph and its adjacency matrix. Blue nodes are part of the batch and grey nodes are not. Solid lines indicate the edges
considered for aggregation and dashed line edges are not considered. Red values in the adjacency matrix indicate that an entry
has been modi"ed.

in deeper GNNs [10]. To address this,Mini-batch sampling (bottom-
right), the most common paradigm, combines mini-batching with
neighbor sampling at each layer and only uses some edges for ag-
gregation. Finally, Full-graph sampling (bottom-left) uses the entire
graph as a batch but samples edges, which is less common.

While there are some sampling algorithms that have fairly suc-
cessful adoption, they still lack a community standard. Graph-
SAGE [15] samples a !xed number of neighbors per node, while
FastGCN [9] samples per layer. LADIES enhances FastGCN by
considering inter-layer dependencies. Cluster-GCN [12] samples
within dense subgraphs. Recent work explores adaptive sampling
(GRAPES [48]) and handling homophilic/heterophilic graphs (AGS-
GNN [13]). However, sampling introduces a trade-o" between ac-
curacy and e#ciency, causing bias and variance [25] in training.
The limited scale of graphs used in these studies (max of 2.5 million
nodes) raises concerns about information loss on larger, real-world
datasets with di"erent structural properties. Consequently, the ef-
fectiveness of sampling remains inconclusive, motivating our focus
on distributed full-graph training.

2.3 Prior Work on Distributed Full-graph GNN
Training

Early distributed full-graph GNN training frameworks include
ROC [17], which partitions graphs using online linear regression
and balances CPU-GPU transfer with GPU memory. CAGNET [38]
introduced tensor-parallel algorithms (1D, 1.5D, 2D, 3D) for SpMM.
While the 2D and 3D algorihtms o"er asymptotic communication
reduction, the 1D and 1.5D algorithms scale better due to lower
constants. A sparsity-aware version of CAGNET’s 1D/1.5D algo-
rithms [26] improves performance by communicating only neces-
sary features.MG-GCN [7] optimizes CAGNETwith communication-
computation overlap. RDM [20] builds on CAGNET with near
communication-free training by replicating one of the matrices.

Other full-graph frameworks introduce approximations for scala-
bility. BNS-GCN [41] partitions with METIS and samples boundary
nodes, but its convergence on diverse datasets needs further vali-
dation. PipeGCN [42] pipelines communication and computation,

potentially causing stale features/gradients, with sensitivity varying
across graphs. DGCL [8] minimizes communication using graph
characteristics and cluster topology. NeutronTP [5] uses tensor
parallelism by only sharding the features to avoid load imbalance.

Table 1 shows limited scaling across many GPUs in existing full-
graph works, with a handful using more than 16 GPUs. Many focus
on 1D SpMM variants, lacking a practical scalable 3D algorithm
despite its theoretical communication advantages. This motivates
Plexus, our framework aiming for approximation-free, scalable 3D
full-graph training for large graphs and high GPU counts.

Table 1: Summary of state of the art in distributed full-graph
GNN training. The number of nodes and edges for the graph
datasets, and number of GPUs are the largest values reported
in each paper.

Name Year # Nodes # Edges # GPUs

AdaQP [40] 2023 2.5M 114M 8
RDM [20] 2023 3M 117M 8
MG-GCN [7] 2022 111M 1.6B 8
Sancus [30] 2022 111M 1.6B 8
MGG [45] 2023 111M 1.6B 8
DGCL [8] 2021 3M 117M 16
ROC [17] 2020 9.5M 232M 16
NeutronStar [44] 2022 42M 1.5B 16
GraNNDis [36] 2024 111M 1.6B 16
NeutronTP [5] 2024 244M 1.7B 16
CDFGNN [50] 2024 111M 1.8B 16
PipeGCN [42] 2022 111M 1.6B 32
CAGNET [38] 2020 14.2M 231M 125
BNS-GCN [41] 2022 111M 1.6B 192
SA+GVB [26] 2024 111M 1.6B 256

Plexus (this work) 2025 111M 1.6B 2048
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Challenges with Parallel GNN training

• Graphs are large and irregular

• Significant load imbalance

• Sparse kernels are slow on GPUs

• High communication overhead

7



Abhinav Bhatele, Daniel Nichols (CMSC828G) 8




