
GNNs and DLRMs
Abhinav Bhatele, Daniel Nichols

Systems for Machine Learning (CMSC828G)



Abhinav Bhatele, Daniel Nichols (CMSC828G)

Annoucements

• Students who haven’t presented in class: submit slides to the same grade scope 
assignment with a YouTube or Google Drive link to the video

• Due date: May 1

• Extra credit is due on May 7

• No extensions, you cannot use the late penalty for this assignment

• It is optional

2



Abhinav Bhatele, Daniel Nichols (CMSC828G)

Graph Neural Networks

• Drug discovery

• Fraud detection

• Route optimization

• Recommendation 
systems

3

https://blogs.nvidia.com/blog/what-are-graph-neural-networks/



Abhinav Bhatele, Daniel Nichols (CMSC828G)

Tasks on graphs

• Node-level: predicting the class of individual nodes

• Edge-level: determine if an edge exist or predict the type of edge

• Graph-level: even categorize entire graphs

4



Abhinav Bhatele, Daniel Nichols (CMSC828G)

Graph Convolution Network (GCN) layer

• Aggregation

• Combination

• Activation

5

HLi = SpMM(A, FLi)

QLi = SGEMM(HLi, WLi)

FLi+1 = σ(QLi)



Abhinav Bhatele, Daniel Nichols (CMSC828G)

Different approximations

6

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Scaling Parallel Full-graph GNN Training to Thousands of GPUs SC ’25, November 16–21, 2025, St. Louis, MO

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

part of
batch

not
part of
batch

0 1

2 3

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

0 1

2 3

0 0 1 0
0 1 0 0

0 1

2 3

0 0 1 1
0 0 1 1
1 1 0 0
1 1 0 0

0 1

2 3

0 0 1 1
1 1 0 0

Full-graph Mini-batch

No
 S

am
pli

ng
Sa

mp
lin

g

Figure 1: Di!erent paradigms of GNN training that can be combined together, shown in four quadrants. Each quadrant shows a
sample graph and its adjacency matrix. Blue nodes are part of the batch and grey nodes are not. Solid lines indicate the edges
considered for aggregation and dashed line edges are not considered. Red values in the adjacency matrix indicate that an entry
has been modi"ed.

in deeper GNNs [10]. To address this,Mini-batch sampling (bottom-
right), the most common paradigm, combines mini-batching with
neighbor sampling at each layer and only uses some edges for ag-
gregation. Finally, Full-graph sampling (bottom-left) uses the entire
graph as a batch but samples edges, which is less common.

While there are some sampling algorithms that have fairly suc-
cessful adoption, they still lack a community standard. Graph-
SAGE [15] samples a !xed number of neighbors per node, while
FastGCN [9] samples per layer. LADIES enhances FastGCN by
considering inter-layer dependencies. Cluster-GCN [12] samples
within dense subgraphs. Recent work explores adaptive sampling
(GRAPES [48]) and handling homophilic/heterophilic graphs (AGS-
GNN [13]). However, sampling introduces a trade-o" between ac-
curacy and e#ciency, causing bias and variance [25] in training.
The limited scale of graphs used in these studies (max of 2.5 million
nodes) raises concerns about information loss on larger, real-world
datasets with di"erent structural properties. Consequently, the ef-
fectiveness of sampling remains inconclusive, motivating our focus
on distributed full-graph training.

2.3 Prior Work on Distributed Full-graph GNN
Training

Early distributed full-graph GNN training frameworks include
ROC [17], which partitions graphs using online linear regression
and balances CPU-GPU transfer with GPU memory. CAGNET [38]
introduced tensor-parallel algorithms (1D, 1.5D, 2D, 3D) for SpMM.
While the 2D and 3D algorihtms o"er asymptotic communication
reduction, the 1D and 1.5D algorithms scale better due to lower
constants. A sparsity-aware version of CAGNET’s 1D/1.5D algo-
rithms [26] improves performance by communicating only neces-
sary features.MG-GCN [7] optimizes CAGNETwith communication-
computation overlap. RDM [20] builds on CAGNET with near
communication-free training by replicating one of the matrices.

Other full-graph frameworks introduce approximations for scala-
bility. BNS-GCN [41] partitions with METIS and samples boundary
nodes, but its convergence on diverse datasets needs further vali-
dation. PipeGCN [42] pipelines communication and computation,

potentially causing stale features/gradients, with sensitivity varying
across graphs. DGCL [8] minimizes communication using graph
characteristics and cluster topology. NeutronTP [5] uses tensor
parallelism by only sharding the features to avoid load imbalance.

Table 1 shows limited scaling across many GPUs in existing full-
graph works, with a handful using more than 16 GPUs. Many focus
on 1D SpMM variants, lacking a practical scalable 3D algorithm
despite its theoretical communication advantages. This motivates
Plexus, our framework aiming for approximation-free, scalable 3D
full-graph training for large graphs and high GPU counts.

Table 1: Summary of state of the art in distributed full-graph
GNN training. The number of nodes and edges for the graph
datasets, and number of GPUs are the largest values reported
in each paper.

Name Year # Nodes # Edges # GPUs

AdaQP [40] 2023 2.5M 114M 8
RDM [20] 2023 3M 117M 8
MG-GCN [7] 2022 111M 1.6B 8
Sancus [30] 2022 111M 1.6B 8
MGG [45] 2023 111M 1.6B 8
DGCL [8] 2021 3M 117M 16
ROC [17] 2020 9.5M 232M 16
NeutronStar [44] 2022 42M 1.5B 16
GraNNDis [36] 2024 111M 1.6B 16
NeutronTP [5] 2024 244M 1.7B 16
CDFGNN [50] 2024 111M 1.8B 16
PipeGCN [42] 2022 111M 1.6B 32
CAGNET [38] 2020 14.2M 231M 125
BNS-GCN [41] 2022 111M 1.6B 192
SA+GVB [26] 2024 111M 1.6B 256

Plexus (this work) 2025 111M 1.6B 2048

3



Abhinav Bhatele, Daniel Nichols (CMSC828G)

Challenges with Parallel GNN training

• Graphs are large and irregular

• Significant load imbalance

• Sparse kernels are slow on GPUs

• High communication overhead

7



Abhinav Bhatele, Daniel Nichols (CMSC828G) 8




