Directed Acyclic Graphs (DAGs)

- A directed graph with no cycles
- Edge (start, end)
- Models precedence constraints
- **Topological order**: An ordering of a directed graph’s nodes \(v_1, v_2, \ldots, v_n \) so that for every edge \((v_i, v_j) \), \(i < j \)

Topological Ordering Algorithm

To compute a topological ordering of \(G \):

1. Find a node \(v \) with no incoming edges and order it first
2. Delete \(v \) from \(G \)
3. Recursively compute a topological ordering of \(G-\{v\} \)
4. And append this order after \(v \)

- Initialization: For each node, determine the number of incoming edges. Create a set of edges for which this is 0.
- One scan through the graph – \(O(n+m) \).
- When deleting \(v \), update the counts for all adjacent nodes and add to the set if the count is 0 – \(O(\text{deg}(v)) \)
- Total time: \(O(n+m) \)

Find a Topological Ordering

Check-in

- On your index card please write one of these three things:
 1. **Too fast**: If the review of graphs was too fast and you don’t feel ready to use them
 2. **Too slow**: If the review of graphs was too slow and you’re bored
 3. **Just right**: If you got what you needed out of the review and are ready to move on
Some Sample Problems

- Demonstrate a few types of problems that we’ll see during this course...

Interval Scheduling

- There is some resource
- \(n \) requests are made to use the resource
- Requests come in the form of some time interval
- The resource can only serve one request at once

Goal: Maximize the number of requests accepted
Solution strategy: a simple pass through a carefully sorted version of the data (Greedy Algorithms)

Weighted Interval Scheduling

- Interval scheduling, but each request is given some weight
- Same as interval scheduling for all weights equal to one

Goal: Maximize the total weight of the scheduled requests
Solution strategy: Build up all possible solutions to determine the optimal (Dynamic Programming)

Bipartite Matching

- Bipartite graph: the nodes can be partitioned into two sets that have no edges between them
- Matching: a set of pairs where each pair contains exactly one node from each of the two sets and no node appears more than once

Goal: Find the maximum matching given some bipartite graph
Solution strategy: Build up larger matchings by doing selective backtracking (Network Flow)

Independent Set Problem

- Independent set: a set of nodes in a graph such that no two nodes have an edge between them

Goal: Find the largest independent set in a given graph
Solution strategy: Hard to find a solution efficiently since the power set is large. Easy to check the solution.

Competitive Facility Location

- Two players alternately choose nodes to occupy in a node-weighted graph
- Chosen nodes must form an independent set with all other chosen nodes

Goal: Given some bound, is there a strategy so that a player can always occupy nodes with weights that sum to that bound
Solution strategy: Even hard to check the solution – it needs a case by case analysis.
Greedy Algorithms

- An algorithm that builds a solution in small steps
- Each small step makes a decision to come closest to the goal
 - E.g. Max algorithm
- Optimal greedy algorithms don’t exist for all problems
- Problems that have optimal greedy solutions have nice local properties

Greedy Proof Techniques

How do we prove that a greedy algorithm is optimal?

- Show that the greedy algorithm as a better solution after every step than any other algorithm could
- Show that any other solution can be transformed to the greedy solution without hurting its quality

Interval Scheduling

- Two requests are compatible if they don’t overlap
- Goal: Find maximum subset of mutually compatible requests

Interval Scheduling: Greedy Algorithm

- Basic idea: For each request in the list, use a simple rule to decide if it should be accepted. Once accepted, all other requests must be compatible with it to be accepted.

 - What is the simple rule?

Interval Scheduling: Greedy Algorithm

Simple rule options that don’t work:

Sort jobs by finish times so that $f_1 \leq f_2 \leq \ldots \leq f_n$.

```
set of jobs selected
A := \emptyset
for j := 1 to n {
    if (job j) compatible with A
        A := A \cup \{j\}
} return A
```
Interval Scheduling

Fill in the schedule:

0 1 2 3 4 5 6 7 8 9 10 11
Interval Scheduling: Analysis

- Analysis: $O(n \log n)$ time
 - Sorting $O(n \log n)$
 - Check compatibility in $O(1)$ by remembering last finish time

Sort jobs by finish times so that $f_1 \leq f_2 \leq \ldots \leq f_n$.

```python
set of jobs selected
A = φ
for j = 1 to n {
    if (job j is compatible with A)
        A = A ∪ {j}
}
return A
```

Proof that the greedy algorithm is optimal:

- Show that the number of jobs scheduled is the same (not that the specific jobs are the same)
- Will try to “stay ahead” of the optimal solution at each step
- “Staying ahead” means that the r^{th} job chosen by the greedy algorithm doesn’t finish after the r^{th} job chosen by the optimal algorithm
- Note that by construction, the greedy solution is valid (i.e. all chosen jobs are compatible)

Interval Scheduling: Analysis

Lemma: Given finish time $f(i)$ of the r^{th} job scheduled by the greedy algorithm and finish time $f(j)$ of the r^{th} job scheduled by the optimal algorithm, $f(i) \leq f(j)$ for all r.

Proof (by induction):
Base case ($r=1$): Greedy algorithm chooses minimum finish time.
Induction Hypothesis: Assume true for $r-1$.
Induction Step: Since $f(i_{r-1}) \leq f(j_{r-1})$, the greedy algorithm has job j_{r-1} as a compatible possibility. It chose the minimum finish time, so $f(i_r) \leq f(j_r)$.

Interval Scheduling: Analysis

Lemma: Given finish time $f(i)$ of the r^{th} job scheduled by the greedy algorithm and finish time $f(j)$ of the r^{th} job scheduled by the optimal algorithm, $f(i) \leq f(j)$ for all r.

Proof (by induction):
Induction Step: Since $f(i_{r-1}) \leq f(j_{r-1})$, the greedy algorithm has job j_{r-1} as a compatible possibility. It chose the minimum finish time, so $f(i_r) \leq f(j_r)$.

7/15/09
Interval Scheduling: Analysis

Theorem: The greedy algorithm is optimal.

Proof (by contradiction): Let \(m \) be the number of jobs scheduled by the optimal algorithm and \(k \) the number scheduled by the greedy algorithm.

- Assume \(m > k \).
- By the lemma, \(f(i_k) - f(j_k) \).
- Since \(m > k \), the optimal algorithm schedules some job \(j_{k+1} \).
- But \(j_{k+1} \) is compatible with the greedy set.

Shortest Paths in a Graph

Shortest path network.

- Directed graph \(G = (V, E) \).
- Source \(s \), destination \(t \).
- Length \(l(e) = \text{length of edge } e \).

Shortest path problem: find shortest directed path from \(s \) to \(t \).

Cost of path \(s-2-3-5-t \):

\[9 + 23 + 2 + 16 = 50. \]

Dijkstra’s Algorithm

Input: edge-weighted graph \(G = (V, E), \) source \(s \), sink \(t \)

Let \(S \) be the set of explored nodes
For each \(u \) in \(S \), store a distance \(d(u) \)
Initialize \(S=\{s\} \) and \(d(s)=0 \)
While \(S \neq V \)
Select a node \(v \) not in \(S \) with at least one edge from \(S \) such that \(d(v) \) is minimized
Add \(v \) to \(S \) and set \(d(v)=\pi(v) \)
EndWhile

\[\pi(v) = \min_{(u,v) \in E} \left(\text{shortest path to some } u \text{ in explored part, followed by a single edge } (u, v) \right) \]

Dijkstra’s Algorithm: Data Structure

Input: edge-weighted graph \(G = (V, E), \) source \(s \), sink \(t \)

Let \(S \) be the set of explored nodes
For each \(u \) in \(S \), store a distance \(d(u) \)
Initialize \(S=\{s\} \) and \(d(s)=0 \)
While \(S \neq V \)
Select a node \(v \) not in \(S \) with at least one edge from \(S \) such that \(d(v) \) is minimized
Add \(v \) to \(S \) and set \(d(v)=\pi(v) \)
EndWhile

\[\pi(v) = \min_{(u,v) \in E} \left(\text{shortest path to some } u \text{ in explored part, followed by a single edge } (u, v) \right) \]

Dijkstra’s Algorithm: Data Structure

- Determine minimum \(\pi(v) \)
- Update \(d(v) \)
- Update \(S \)
Dijkstra's Algorithm: Data Structure

Priority Queue:
- A data structure that maintains a set of elements S
- Each element has an associated key that indicates its priority
- Supports the following operations:
 1. Add an element to the queue
 2. Remove the element with the highest priority

Example Implementation: Heaps
- Tree-based data structure
- \(\text{key(parent) } \geq \text{key(child)} \)
- Operations:
 1. Find max \(\mathcal{O}(1) \)
 2. Delete max \(\mathcal{O}(\log n) \)
 3. Increase key \(\mathcal{O}(\log n) \)
 4. Insert key/value pair \(\mathcal{O}(\log n) \)
 5. Merge: combine two heaps \(\mathcal{O}(n) \)

Dijkstra's Algorithm: Implementation

For each unexplored node, explicitly maintain

- Next node to explore = node with minimum \(\pi(v) \).
- When exploring \(v \), for each incident edge \(e = (v, w) \), update \(\pi(w) = \min(\pi(w), \pi(v) + l(e)) \).

Efficient implementation: Maintain a priority queue of unexplored nodes, prioritized by \(\pi(v) \)

Dijkstra's Algorithm: Time Analysis

Input: edge-weighted graph \(G = (V, E, \ell) \), source \(s \), sink \(t \)
Let \(S \) be the set of explored nodes
For each \(u \) in \(S \), store a distance \(d(u) \)
Initialize \(S = \{s\} \) and \(d(s) = 0 \)
While \(S \neq V \):
 Select a node \(v \) not in \(S \) with at least one edge from \(S \) such that \(\pi(v) = \min_{u \in S} \{d(u) + l(e_{u,v}) \} \) minimized
 Add \(v \) to \(S \) and set \(\pi(v) = \pi(v) \)
EndWhile

<table>
<thead>
<tr>
<th>PQ Operation</th>
<th>Dijkstra's</th>
<th>Array</th>
<th>Binary heap</th>
<th>Fibonacci heap</th>
<th>2-3 heap</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insert</td>
<td>(\mathcal{O}(1))</td>
<td>(\mathcal{O}(n))</td>
<td>(\mathcal{O}(\log n))</td>
<td>(\mathcal{O}(\log n))</td>
<td>(\mathcal{O}(\log n))</td>
</tr>
<tr>
<td>ExtractMin</td>
<td>(\mathcal{O}(1))</td>
<td>(\mathcal{O}(n))</td>
<td>(\mathcal{O}(\log n))</td>
<td>(\mathcal{O}(\log n))</td>
<td>(\mathcal{O}(\log n))</td>
</tr>
<tr>
<td>ChangeKey</td>
<td>(\mathcal{O}(1))</td>
<td>(\mathcal{O}(n))</td>
<td>(\mathcal{O}(\log n))</td>
<td>(\mathcal{O}(\log n))</td>
<td>(\mathcal{O}(\log n))</td>
</tr>
<tr>
<td>Delete</td>
<td>(\mathcal{O}(1))</td>
<td>(\mathcal{O}(n))</td>
<td>(\mathcal{O}(\log n))</td>
<td>(\mathcal{O}(\log n))</td>
<td>(\mathcal{O}(\log n))</td>
</tr>
<tr>
<td>Total</td>
<td>(n^2)</td>
<td>(n \log n)</td>
<td>(n \log \log n)</td>
<td>(n \log \log n)</td>
<td>(n \log \log n)</td>
</tr>
</tbody>
</table>

† Individual ops are amortized bounds