Greedy Algorithms: Shortest Paths and Minimum Spanning Trees
CMSC 451, Summer 2009
Sorelle Friedler

Updates
- Survey says... we’re done with graph review

Review: Dijkstra’s Algorithm
Numb3rs Clip

Dijkstra’s Shortest Path Algorithm

Find shortest path from s to t.

Let S = {} and d(s) = 0
For each u in S, store a distance d(u)
While S ≠ V:
 Select a node v not in S with at least one edge from S to minimize d(v)
 Add v to S and set d(v) = \min_{u \in S} d(u) + l(e)

S = {} \hspace{1cm} PQ = {s, 2, 3, 4, 5, 6, 7, t}
Dijkstra's Shortest Path Algorithm

$S = \{s\}$
PQ = \{2, 3, 4, 5, 6, 7, t\}

distance label

$S = \{s, 2\}$
PQ = \{3, 4, 5, 6, 7, t\}

distance label

$S = \{s, 2, 6\}$
PQ = \{3, 4, 5, 7, t\}

distance label
Dijkstra’s Shortest Path Algorithm

\[S = \{ s, 2, 6 \} \]
\[PQ = \{ 3, 4, 5, t \} \]

Dijkstra’s Shortest Path Algorithm

\[S = \{ s, 2, 6 \} \]
\[PQ = \{ 3, 4, 5, t \} \]

Dijkstra’s Shortest Path Algorithm

\[S = \{ s, 2, 6 \} \]
\[PQ = \{ 3, 4, 5, t \} \]

Dijkstra’s Shortest Path Algorithm

\[S = \{ s, 2, 6, 7 \} \]
\[PQ = \{ 3, 4, 5, t \} \]

Dijkstra’s Shortest Path Algorithm

\[S = \{ s, 2, 3, 6, 7 \} \]
\[PQ = \{ 4, 5, t \} \]

Dijkstra’s Shortest Path Algorithm

\[S = \{ s, 2, 3, 6, 7 \} \]
\[PQ = \{ 4, 5, t \} \]

Dijkstra’s Shortest Path Algorithm

\[S = \{ s, 2, 3, 6, 7 \} \]
\[PQ = \{ 4, 5, t \} \]
Dijkstra's Shortest Path Algorithm

\[S = \{ s, 2, 3, 5, 6, 7 \} \]
\[PQ = \{ 4, t \} \]

\[\infty \]
\[\infty \]
\[\infty \]
\[\infty \]
\[\infty \]
\[\infty \]
\[\infty \]

\[S = \{ s, 2, 3, 4, 5, 6, 7 \} \]
\[PQ = \{ t \} \]

\[\infty \]
\[\infty \]
\[\infty \]
\[\infty \]
\[\infty \]
\[\infty \]
\[\infty \]

\[S = \{ s, 2, 3, 4, 5, 6, 7, t \} \]
\[PQ = \{ \} \]

\[\infty \]
\[\infty \]
\[\infty \]
\[\infty \]
\[\infty \]
\[\infty \]
\[\infty \]

\[S = \{ s, 2, 3, 4, 5, 6, 7, t \} \]
\[PQ = \{ \} \]

\[\infty \]
\[\infty \]
\[\infty \]
\[\infty \]
\[\infty \]
\[\infty \]
\[\infty \]

Dijkstra's Algorithm: Proof of Correctness

Invariant: For each node \(v \in S \), \(d(v) \) is the length of the shortest \(s-v \) path.

(Applying for \(v=t \) immediately gives the proof of optimality.)

Proof: (by induction on \(|S| \))

Base case: \(|S| = 1, d(s)=0, d(t)=0\), which is the shortest it could be.

Inductive hypothesis: Assume true for \(|S| = k \geq 1\).

Induction step: Proof for \(|S|=k+1\)

- Let \(v \) be next node added to \(S \), and let \(u-v \) be the chosen edge.
- The shortest \(s-u \) path plus \((u,v) \) is an \(s-v \) path of length \(\pi(v) \).
- Consider any \(s-v \) path \(P \). We'll see that it's no shorter than \(\pi(v) \).
- Let \(x-y \) be the first edge in \(P \) that leaves \(S \), and let \(P' \) be the subpath to \(x \).
- \(P \) is already too long as soon as it leaves \(S \).
- \(d(y) \) is set to \(\pi(v) \).
- \(d(y) = \pi(v) \) is optimal.
- \(\pi(v) \leq \pi(y) \) (shown).

\[\pi(y) \geq d(y) \]

\[\pi(y) \geq d(x) + l(x,y) \geq \pi(x) \geq \pi(y) \]

\[\pi(x) \geq \pi(y) \]

\[\pi(x) \geq \pi(y) \geq \pi(y) \]

\[\pi(x) \geq \pi(y) \geq \pi(y) \]
Dijkstra’s Algorithm Greedy Perspective

What is the “step” in our step-by-step creation of a solution?
What is the greedy choice being made?
Note on proof: The analysis was in the “stay ahead” form

Spanning Tree

Given an undirected, connected graph G:
A spanning tree of G is a tree containing all vertices of G and some subset of the edges of G.
• maximal subset of edges of G with no cycle
• minimal subset of edges of G that connect all vertices

Minimum Spanning Tree

Minimum spanning tree. Given a connected graph G = (V, E) with real-valued edge weights \(c_e \), an MST is a subset of the edges \(T \subseteq E \) such that T is a spanning tree whose sum of edge weights is minimized.

Cayley’s Theorem. There are \(n^{n-2} \) spanning trees of \(K_n \).

Applications

MST is fundamental problem with diverse applications.

• Network design. - telephone, electrical, hydraulic, TV cable, computer, road
• Cluster analysis.

Developing a Greedy Algorithm to Find a Minimum Spanning Tree

Options:
• Look at all nodes and consider their adjacent edges
• Look at all edges and their weights
Make greedy decisions to:
• Minimize total edge cost
• Maximize cost of edges not chosen

Greedy Algorithms

Kruskal’s algorithm. Start with T = φ. Consider edges in ascending order of cost. Insert edge e in T unless doing so would create a cycle.

Reverse-Delete algorithm. Start with T = E. Consider edges in descending order of cost. Delete edge e from T unless doing so would disconnect T.

Prim’s algorithm. Start with some root node s and greedily grow a tree T from s outward. At each step, add the cheapest edge e to T that has exactly one endpoint in T.

Remark. All three algorithms produce an MST.
Kruskal’s Algorithm

Find the minimum spanning tree using Kruskal’s algorithm:
Start with T = φ. Consider edges in ascending order of cost. Insert edge e in T unless doing so would create a cycle.

Reverse-Delete Algorithm

Find the minimum spanning tree using the Reverse-Delete algorithm:
Start with T = E. Consider edges in descending order of cost. Delete edge e from T unless doing so would disconnect T.

Prim’s Algorithm

Find the minimum spanning tree using Prim’s algorithm:
Start with some root node s and greedily grow a tree T from s outward. At each step, add the cheapest edge e to T that has exactly one endpoint in T.

Greedy Algorithms

Simplifying assumption. All edge costs c_e are distinct.

Cut property. Let S be any subset of nodes, and let e be the min cost edge with exactly one endpoint in S. Then the MST contains e.

Cycle property. Let C be any cycle, and let f be the max cost edge belonging to C. Then the MST does not contain f.

c is in the MST
f is not in the MST

Cycles and Cuts

Cycle. Set of edges the form a-b, b-c, c-d, ..., y-z, z-a.

Cutset. A cut is a subset of nodes S. The corresponding cutset D is the subset of edges with exactly one endpoint in S.

Cycle-Cut Intersection

Claim. A cycle and a cutset intersect in an even number of edges.

Pf. (by picture)
Greedy Algorithms

Simplifying assumption. All edge costs c_e are distinct.

Cut property. Let S be any subset of nodes, and let e be the min cost edge with exactly one endpoint in S. Then the MST T^* contains e.

Pf. (exchange argument)
- Suppose e does not belong to T^*, and let's see what happens.
- Adding e to T^* creates a cycle C in T^*.
- Edge e is both in the cycle C and in the cutset D corresponding to S.
- $T^* \cup \{e\} - \{f\}$ is also a spanning tree.
- Since $c_e < c_f$, cost($T^*) < cost(T^*)$.
- This is a contradiction.

Cycle property. Let C be any cycle in G, and let f be the max cost edge belonging to C. Then the MST T^* does not contain f.

Pf. (exchange argument)
- Suppose f belongs to T^*, and let's see what happens.
- Deleting f from T^* creates a cut S in T^*.
- Edge f is both in the cycle C and in the cutset D corresponding to S.
- $T' = T^* \cup \{e\} - \{f\}$ is also a spanning tree.
- Since $c_e < c_f$, cost($T^*) < cost(T^*)$.
- This is a contradiction.

Implementation: Prim's Algorithm

Implementation. Use a priority queue ala Dijkstra.
- Maintain set of explored nodes S.
- For each unexplored node v, maintain attachment cost $a[v] = \text{cost of cheapest edge } v \text{ to a node in } S$.
- $O(n^2)$ with an array; $O(m \log n)$ with a binary heap.

Prim(G, c) {
 foreach ($v \in V$) $a[v] \leftarrow \infty$
 Initialize set of explored nodes $S \leftarrow \emptyset$
 while $(Q$ is not empty) {
 $u \leftarrow \text{delete min element from } Q$
 $S \leftarrow S \cup \{u\}$
 Initialize set of explored nodes $S \leftarrow \emptyset$
 while $(Q$ is not empty) {
 $u \leftarrow \text{delete min element from } Q$
 $S \leftarrow S \cup \{u\}$
 $\text{if } (v \notin S \text{ and } (c_e < a[v]))$
 $a[v] \leftarrow c_{e}$
 $\text{decrease priority } a[v] \text{ to } c_{e}$
 }
 }
 return T
}

Prim's Algorithm: Proof of Correctness (Sketch)

Prim's algorithm. [Jarník 1930, Dijkstra 1957, Prim 1959]
- Only edges belonging to the minimum spanning tree are added (by application of the cut property).
- A spanning tree is created since
 - No cycles exist since each added edge must have exactly one endpoint in S.
 - All nodes are added, since this is the criterion that the algorithm stops.

Kruskal's Algorithm

Kruskal's algorithm. [Kruskal, 1956]
- Consider edges in ascending order of weight.
- Case 1: If adding e to T creates a cycle, discard e according to cycle property.
- Case 2: Otherwise, insert $e = (u,v)$ into T according to cut property where $S = \text{set of nodes in } u \text{'s connected component}$.

Kruskal(G, c) {
 Sort edge weights so that $c_1 \leq c_2 \leq \ldots \leq c_m$.
 $T \leftarrow \emptyset$
 foreach ($u \in V$) {
 $\text{make a set containing singleton } u$
 for $i = 1$ to m
 are u and v in different connected components?
 $(u,v) = e_i$
 if $(u$ and v are in different sets)$ {
 $T \leftarrow T \cup \{e_i\}$
 merge the sets containing u and v
 }
 return T
}
Knapsack's Algorithm: Proof of Correctness

Proof:
- Only edges in the MST are added since it must span the cut since it doesn't create a cycle, and it is the cheapest (Cut property)
- A spanning tree is created
- It contains no cycles by design of the algorithm
- It is connected since otherwise there would be some edge that could be added without creating a cycle

Implementation: Kruskal's Algorithm

```javascript
Kruskal(G, c) {
    sort edge weights so that c_1 ≤ c_2 ≤ ... ≤ c_m
    T ← Ø
    foreach (u ∈ V) make a set containing singleton u
    for i = 1 to m
        (u,v) = e_i
        if (u,v are in different sets) {
            T ← T ∪ {e_i}
            merge the sets containing u and v
        }
    return T
}
```

Union-Find Data Structure

- `MakeUnionFind(S={a,b})` Create singleton trees for all items in the set
- `Union(A={a},B={b})` Merge two connected components by creating a pointer from the root of the smaller tree to the root of the larger tree. Store the size of its tree with each root.
- `Find(a)` Traverse up the tree until finding the root. The name of the root is the name of the tree.

Time analysis

- `MakeUnionFind(S={a,b})` Create singleton trees for all items in the set
 - `O(n)`
- `Union(A={a},B={b})` Merge two connected components by creating a pointer from the root of the smaller tree to the root of the larger tree. Store the size of its tree with each root.
 - `O(1)`
- `Find(a)` Traverse up the tree until finding the root. The name of the root is the name of the tree.
 - `O(log n)` Takes time on the order of the number of times the name changed. Since the larger set keeps its name, a name change implies that the set of at least doubled. It can be of size at most n.