Algorithmic Complexity I

Department of Computer Science
University of Maryland, College Park
Algorithm Efficiency

• Efficiency
 • Amount of resources used by algorithm
 • Time, space
• Measuring efficiency
 • Benchmarking
 • Approach
 • Pick some desired inputs
 • Actually run implementation of algorithm
 • Measure time & space needed
• Asymptotic analysis
Benchmarking

• Advantages
 • Precise information for given configuration
 • Implementation, hardware, inputs

• Disadvantages
 • Affected by configuration
 • Data sets (often too small)
 • Dataset that was the right size 3 years ago is likely too small now
 • Hardware
 • Software
 • Affected by special cases (biased inputs)
 • Does not measure intrinsic efficiency
Asymptotic Analysis

• Approach
 • Mathematically analyze efficiency
 • Calculate time as function of input size n
 • $T \approx O(f(n))$
 • T is on the order of $f(n)$
 • “Big O” notation

• Advantages
 • Measures intrinsic efficiency
 • Dominates efficiency for large input sizes
 • Programming language, compiler, processor irrelevant
Search Comparison

• For number between 1…100
 • Simple algorithm = 50 steps
 • Binary search algorithm = $\log_2(n) = 7$ steps
• For number between 1…100,000
 • Simple algorithm = 50,000 steps
 • Binary search algorithm = $\log_2(n)$ (about 17 steps)
• Binary search is much more efficient!
Asymptotic Complexity

- Comparing two linear functions

<table>
<thead>
<tr>
<th>Size</th>
<th>Running Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n/2</td>
</tr>
<tr>
<td>64</td>
<td>32</td>
</tr>
<tr>
<td>128</td>
<td>64</td>
</tr>
<tr>
<td>256</td>
<td>128</td>
</tr>
<tr>
<td>512</td>
<td>256</td>
</tr>
</tbody>
</table>
Asymptotic Complexity

• Comparing two functions
 • \(n/2 \) and \(4n+3 \) behave similarly
 • Run time roughly doubles as input size doubles
 • Run time increases **linearly** with input size
• For large values of \(n \)
 • \(\text{Time}(2n) / \text{Time}(n) \) approaches exactly 2
• Both are \(O(n) \) programs
• Example: \(2n + 100 \rightarrow O(n) \) (next slide)
Complexity Example

- \(2n + 100 \Rightarrow O(n)\)
Asymptotic Complexity

- Comparing two quadratic functions

<table>
<thead>
<tr>
<th>Size</th>
<th>Running Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n^2</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>8</td>
<td>64</td>
</tr>
<tr>
<td>16</td>
<td>256</td>
</tr>
</tbody>
</table>
Asymptotic Complexity

• Comparing two functions
 • n^2 and $2n^2 + 8$ behave similarly
 • Run time roughly increases by 4 as input size doubles
 • Run time increases **quadratically** with input size
• For large values of n
 • $\text{Time}(2n) / \text{Time}(n)$ approaches 4
• Both are $O(n^2)$ programs
• **Example**: $\frac{1}{2} n^2 + 100 \ n \rightarrow O(n2)$ (next slide)
Complexity Examples

- \(\frac{1}{2} n^2 + 100 n \Rightarrow O(n^2) \)
Asymptotic Complexity

- Comparing two log functions

<table>
<thead>
<tr>
<th>Size</th>
<th>Running Time</th>
<th>5 * log₂(n) + 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>log₂(n)</td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>6</td>
<td>33</td>
</tr>
<tr>
<td>128</td>
<td>7</td>
<td>38</td>
</tr>
<tr>
<td>256</td>
<td>8</td>
<td>43</td>
</tr>
<tr>
<td>512</td>
<td>9</td>
<td>48</td>
</tr>
</tbody>
</table>
Asymptotic Complexity

- Comparing two functions
 - $\log_2(n)$ and $5 \times \log_2(n) + 3$ behave similarly
 - Run time roughly increases by constant as input size doubles
 - Run time increases logarithmically with input size
- For large values of n
 - $\text{Time}(2n) - \text{Time}(n)$ approaches constant
 - Base of logarithm does not matter
 - Simply a multiplicative factor
 - $\log_a N = (\log_b N) / (\log_b a)$
 - Both are $O(\log(n))$ programs
Big-O Notation

- Represents
 - Upper bound on number of steps in algorithm
 - For sufficiently large input size
 - Intrinsic efficiency of algorithm for large inputs
Formal Definition of Big-O

• Function $f(n)$ is $O(g(n))$ if
 • For some positive constants M, N_0
 • $M \times g(n) \geq f(n)$, for all $n \geq N_0$

• Intuitively
 • For some coefficient M & all data sizes $\geq N_0$
 • $M \times g(n)$ is always greater than $f(n)$
Big-O Examples

- $2n^2 + 10n + 1000 \Rightarrow O(n^2)$
 - Select $M = 4$, $N_0 = 100$
 - For $n \geq 100$
 - $4n^2 \geq 2n^2 + 10n + 1000$ is always true
 - Example \Rightarrow for $n = 100$
 - $40000 \geq 20000 + 1000 + 1000$
Observations

• For large values of n
 • Any $O(\log(n))$ algorithm is faster than $O(n)$
 • Any $O(n)$ algorithm is faster than $O(n^2)$
• Asymptotic complexity is a fundamental measure of efficiency
• Big-O results only valid for big values of n
Asymptotic Complexity Categories

<table>
<thead>
<tr>
<th>Complexity</th>
<th>Name</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>O(1)</td>
<td>Constant</td>
<td>Array access</td>
</tr>
<tr>
<td>O(log(n))</td>
<td>Logarithmic</td>
<td>Binary search</td>
</tr>
<tr>
<td>O(n)</td>
<td>Linear</td>
<td>Largest element</td>
</tr>
<tr>
<td>O(n log(n))</td>
<td>N log N</td>
<td>Optimal sort</td>
</tr>
<tr>
<td>O(n²)</td>
<td>Quadratic</td>
<td>2D Matrix addition</td>
</tr>
<tr>
<td>O(n³)</td>
<td>Cubic</td>
<td>2D Matrix multiply</td>
</tr>
<tr>
<td>O(n^k)</td>
<td>Polynomial</td>
<td>Linear programming</td>
</tr>
<tr>
<td>O(k^n)</td>
<td>Exponential</td>
<td>Integer programming</td>
</tr>
<tr>
<td>O(n!)</td>
<td>Factorial</td>
<td>Brute-force search TSP</td>
</tr>
<tr>
<td>O(n^n)</td>
<td>N to the N</td>
<td></td>
</tr>
</tbody>
</table>

From smallest to largest, for size n, constant $k > 1$
Complexity Category Example

- Problem Size
- # of Solution Steps
- 2^n
- n^2
- $n \log(n)$
- n
- $\log(n)$
Calculating Asymptotic Complexity

• As n increases
 • Highest complexity term dominates
 • Can ignore lower complexity terms
• Examples
 • $2n + 100 \Rightarrow O(n)$
 • $10n + n\log(n) \Rightarrow O(n\log(n))$
 • $100n + \frac{1}{2}n^2 \Rightarrow O(n^2)$
 • $100n^2 + n^3 \Rightarrow O(n^3)$
 • $1/1002^n + 100n^4 \Rightarrow O(2^n)$
Types of Case Analysis

- Can analyze different types (cases) of algorithm behavior

- Types of analysis
 - Best case
 - Worst case
 - Average case
 - Amortized
Best/Worst Case Analysis

- **Best case**
 - Smallest number of steps required
 - Not very useful
 - Example ⇒ Find item in first place checked

- **Worst case**
 - Largest number of steps required
 - Useful for upper bound on worst performance
 - Real-time applications (e.g., multimedia)
 - Quality of service guarantee
 - Example ⇒ Find item in last place checked
Quicksort Example

- **Quicksort**
 - One of the fastest comparison sorts
 - Frequently used in practice
- **Quicksort algorithm**
 - Pick *pivot* value from list
 - Partition list into values smaller & bigger than pivot
 - Recursively sort both lists
- **Quicksort properties**
 - Average case = $O(n\log(n))$
 - Worst case = $O(n^2)$
 - Pivot ≈ smallest / largest value in list
 - Picking from front of nearly sorted list
- **Can avoid worst-case behavior**
 - Select random pivot value
Average Case Analysis

- **Average case analysis**
 - Number of steps required for “typical” case
 - Most useful metric in practice
 - Different approaches: average case, expected case

- **Average case**
 - Average over all possible inputs
 - Assumes all inputs have the same probability
 - Example
 - Case 1 = 10 steps, Case 2 = 20 steps
 - Average = 15 steps

- **Expected case**
 - Weighted average over all possible inputs
 - Based on probability of each input
 - Example
 - Case 1 (90%) = 10 steps, Case 2 (10%) = 20 steps
 - Average = 11 steps
Amortized Analysis

• Approach
 • Applies to worst-case sequences of operations
 • Finds average running time per operation
 • Example
 • Normal case = 10 steps
 • Every 10th case may require 20 steps
 • Amortized time = 11 steps

• Assumptions
 • Can predict possible sequence of operations
 • Know when worst-case operations are needed
 • Does not require knowledge of probability
 • By using amortized analysis we can show the best way to grow an array is by doubling its size (rather than increasing by adding one entry at a time)