Recursive Algorithms

Department of Computer Science
University of Maryland, College Park
Recursion

- Recursion is a strategy for solving problems
 - A procedure that calls itself

Approach

- If (problem instance is simple / trivial)
 - Solve it directly
- Else
 - Simplify problem instance into smaller instance(s) of the original problem
 - Solve smaller instance using same algorithm
 - Combine solution(s) to solve original problem
Example – Factorial

• Factorial definition
 • \(n! = n \times n-1 \times n-2 \times n-3 \times \ldots \times 3 \times 2 \times 1 \)
 • \(0! = 1 \)

• To calculate factorial of \(n \)
 • Base case
 • If \(n = 0 \), return 1
 • Recursive step
 • Calculate the factorial of \(n-1 \)
 • Return \(n \times (\text{the factorial of } n-1) \)

• Code
  ```c
  int fact ( int n ) {
    if ( n == 0 )
      return 1;  // base case
    return n * fact(n-1);  // recursive step
  }
  ```
Properties

• Recursion relies on the call stack
 • State of current procedure is saved when procedure is recursively invoked
 • Every procedure invocation gets own stack space
 • Let’s draw a diagram for factorial(4)
• Any problem solvable with recursion may be solved with iteration (and vice versa)
 • Use iteration with explicit stack to store state
 • Algorithm may be simpler for one approach
Recursion vs. Iteration

• Recursive algorithm

```c
int fact (int n) {
    if (n == 0) return 1;
    return n * fact(n-1);
}
```

Recursive algorithm is closer to factorial definition

• Iterative algorithm

```c
int fact ( int n ) {
    int i, res;
    res = 1;
    for (i=n; i>0; i--) {
        res = res * i;
    }
    return res;
}
```
Examples

• **Find** → To **find** an element in an array
 • Base case
 • If array is empty, return false
 • Recursive step
 • If 1st element of array is given value, return true
 • Skip 1st element and **recur** on remainder of array
• **Count Instances** → To **count** # of elements in an array
 • Base case
 • If array is empty, return 0
 • Recursive step
 • Skip 1st element and **recur** on remainder of array
 • Add 1 to result
• Some recursive problems require an auxiliary function
 • Auxiliary function → the one that actually is recursive
• **Example**: ArrayExamples.java
Examples

• Let’s look at recursive solutions for operations on a linked list
 • Find
 • Count
 • Print list
 • Print list in reverse

• Notice we can use the ?: operator for the implementation of some of these methods
Recursion vs. Iteration

- **Iterative algorithms**
 - May be more efficient
 - No additional function calls
 - Run faster, use less memory

- **Recursive algorithms**
 - Higher overhead
 - Time to perform function call
 - Memory for call stack
 - May be simpler algorithm
 - Easier to understand, debug, maintain
 - Natural for backtracking searches
 - Suited for recursive data structures
 - Trees, graphs…
Making Recursion Work

- Designing a correct recursive algorithm
- Verify
 - Base case(s) is
 - Recognized correctly
 - Solved correctly
 - Recursive case
 - Solves 1 or more simpler subproblems
 - Can calculate solution from solution(s) to subproblems
 - Makes progress toward the base case
- Uses principle of proof by induction
Proof By Induction

- Mathematical technique
- A theorem is true for all $n \geq 0$ if
 - Base case
 - Prove theorem is true for $n = 0$, and
 - Inductive step
 - Assume theorem is true for n (inductive hypothesis)
 - Prove theorem must be true for $n + 1$
Types of Recursion

- Tail recursion
 - Has a recursive call as final action
 - Example
    ```
    int factorial(int n, int partialResult) {
        if (n == 0)
            return partialResult;
        return factorial(n - 1, n*partialResult);
    }
    ```
 - Can easily transform to iteration (loop)
 - In functional languages tail call elimination is often guaranteed by the language
Types of Recursion

• Non-tail recursion

 • Example

 int nontail(int n) {
 ...
 x = nontail(n-1) ;
 y = nontail(n-2) ;
 z = x + y;
 return z;
 }

 • Can transform to iteration using explicit stack
Possible Problems – Infinite Loop

- Infinite recursion
 - If recursion not applied to simpler problem

```java
int bad (int n) {
    if (n == 0)
        return 1;
    return bad(n);
}
```

- Infinite loop?
- Eventually halt when runs out of (stack) memory
 - Stack overflow
Possible Problems – Efficiency

• May perform excessive computation
 • If recomputing solutions for subproblems
• Example
 • Fibonacci numbers
 • fibonacci(0) = 0
 • fibonacci(1) = 1
 • fibonacci(n) = fibonacci(n-1) + fibonacci(n-2)
• Example: Fibonacci.java
Possible Problems – Efficiency

- Recursive algorithm to calculate fibonacci(n)
 - If n is 0 or 1, return 1
 - Else compute fibonacci(n-1) and fibonacci(n-2)
 - Return their sum
- Simple algorithm \Rightarrow exponential time $O(2^n)$
 - Computes fibonacci(1) 2^n times
- Can solve efficiently using
 - Iteration
 - Dynamic programming
- Will examine different algorithm strategies later…
Examples of Recursive Algorithms

- Towers of Hanoi
- Binary search
- Quicksort
- N-queens
- Fractals
Example – Towers of Hanoi

- Problem
 - Move stack of disks between pegs
 - Can only move top disk in stack
 - Only allowed to place disk on top of larger disk
Example – Towers of Hanoi

• To move a stack of n disks from peg X to Y
 • Base case
 • If $n = 1$, move disk from X to Y
 • Recursive step
 • Move top $n-1$ disks from X to 3rd peg
 • Move bottom disk from X to Y
 • Move top $n-1$ disks from 3rd peg to Y

Iterative algorithm would take much longer to describe!
N-Queens

• Goal
 • Place queens on a board such that every row and column contains one queen, but no queen can attack another queen

• Recursive approach
 • To place queens on NxN board
 • Assume you’ve already placed K queens
Fractals

• Goal
 • Construct shapes using a simple recursive definition with a natural appearance

• Properties
 • Appears similar at all scales of magnification
 • Therefore “infinitely complex”
 • Not easily described in Euclidean geometry

Mandelbrot Set