CMSC 132: OBJECT-ORIENTED PROGRAMMING II

Trees & Binary Search Trees

Department of Computer Science
University of Maryland, College Park
Trees

- Trees are hierarchical data structures
 - One-to-many relationship between elements
- Tree node / element
 - Contains data
 - Referred to by only 1 (parent) node
 - Contains links to any number of (children) nodes
Trees

• Terminology
 • Root ⇒ node with no parent
 • Leaf ⇒ all nodes with no children
 • Interior ⇒ all nodes with children
Trees

- Terminology
 - Sibling \Rightarrow node with same parent
 - Descendent \Rightarrow children nodes & their descendents
 - Subtree \Rightarrow portion of tree that is a tree by itself
 \Rightarrow a node and its descendents
Trees

- Terminology
 - Level \(\Rightarrow\) is a measure of a node’s distance from root
 - Definition of level
 - If node is the root of the tree, its level is 1
 - Else, the node’s level is 1 + its parent’s level

- Height (depth) \(\Rightarrow\) max level of any node in tree

Height = 3
Binary Trees

- Binary tree
 - Tree with 0–2 children per node
 - Left & right child / subtree

Binary Tree

Parent

Left Child

Right Child
Tree Traversal

- Often we want to
 - Find all nodes in tree
 - Determine their relationship
- Can do this by
 - Walking through the tree in a prescribed order
 - Visiting the nodes as they are encountered
- Process is called tree traversal
Tree Traversal

• Goal
 • Visit every node in binary tree

• Approaches
 • **Breadth first** ⇒ closer nodes first
 • **Depth first**
 • Preorder ⇒ parent, left child, right child
 • Inorder ⇒ left child, parent, right child
 • Postorder ⇒ left child, right child, parent

NOTE: left visited before right
Tree Traversal Methods

• **Pre-order**
 1. Visit node // first
 2. Recursively visit left subtree
 3. Recursively visit right subtree

• **In-order**
 1. Recursively visit left subtree
 2. Visit node // second
 3. Recursively visit right subtree

• **Post-order**
 1. Recursively visit left subtree
 2. Recursively visit right subtree
 3. Visit node // last
Tree Traversal Methods

• Breadth-first

BFS(Node n) {
 Queue Q = new Queue();
 Q.enqueue(n); // insert node into Q
 while (!Q.empty()) {
 n = Q.dequeue(); // remove next node
 if (!n.isEmpty()) {
 visit(n); // visit node
 Q.enqueue(n.Left()); // insert left subtree in Q
 Q.enqueue(n.Right()); // insert right subtree in Q
 }
 }
}
Tree Traversal Examples

• Breadth-first
 • $+ \times / \ 2 \ 3 \ 8 \ 4$

• Pre-order (prefix)
 • $+ \times 2 \ 3 \ / \ 8 \ 4$

• In-order (infix)
 • $2 \times 3 + 8 / 4$

• Post-order (postfix)
 • $2 \ 3 \times 8 \ 4 / +$

Expression tree
Binary Tree Implementation

- **Choice #1**: Using a class to represent a Node

  ```java
  Class Node {
      KeyType key;
      Node left, right;  // null if empty
  }
  ```

 Node root = null; // Empty Tree

- **Choice #2**: Using a Polymorphic Binary Tree
 - We will talk about this implementation later on
Types of Binary Trees

- **Degenerate**
 - Mostly 1 child / node
 - Height = $O(n)$
 - Similar to linear list

- **Balanced**
 - Mostly 2 child / node
 - Height = $O(\log(n))$
 - $2^{\text{Height}} - 1 = n$ (number of nodes)
 - Useful for searches

Degenerate binary tree

Balanced binary tree
Binary Search Trees

- Key property
 - Value at node
 - Smaller values in left subtree
 - Larger values in right subtree
- Example
 - $Y > X$
 - $Y < Z$
Binary Search Trees

- Examples

Binary search trees

Non-binary search tree
Tree Traversal Examples

- In-order
 - 17, 32, 44, 48, 50, 62, 78, 88

Sorted order!

Binary search tree
Example Binary Searches

• Find (2)

2 < 10, left
2 < 5, left
2 = 2, found

2 < 5, left
2 = 2, found
Example Binary Searches

• Find (25)

25 > 10, right
25 < 30, left
25 = 25, found

25 > 5, right
25 < 45, left
25 < 30, left
25 > 10, right
25 = 25, found
Binary Search Properties

- Time of search
 - Proportional to height of tree
 - Balanced binary tree
 - $O(\log(n))$ time
 - Degenerate tree
 - $O(n)$ time
 - Like searching linked list / unsorted array
- Requires
 - Ability to compare key values
Binary Search Tree Construction

• How to build & maintain binary trees?
 • Insertion
 • Deletion
• Maintain key property (invariant)
 • Smaller values in left subtree
 • Larger values in right subtree
Binary Search Tree – Insertion

• **Algorithm**
 1. Perform search for value X
 2. Search will end at node Y (if X not in tree)
 3. If X < Y, insert new leaf X as new left subtree for Y
 4. If X > Y, insert new leaf X as new right subtree for Y

• **Observations**
 • O(log(n)) operation for balanced tree
 • Insertions may unbalance tree
Example Insertion

• Insert (20)

20 > 10, right
20 < 30, left
20 < 25, left
Insert 20 on left
Binary Search Tree – Deletion

• Algorithm
 1. Perform search for value X
 2. If X is a leaf, delete X
 3. Else // must delete internal node
 a) Replace with largest value Y on left subtree
 OR smallest value Z on right subtree
 b) Delete replacement value (Y or Z) from subtree

• Observation
 • $O(\log(n))$ operation for balanced tree
 • Deletions may unbalance tree
Example Deletion (Leaf)

- Delete (25)

The tree before deletion:

```
10
 / \
5  30
 /   /
2  25 45
```

The deletion process:

- 25 > 10, right
- 25 < 30, left
- 25 = 25, delete

The tree after deletion:

```
10
 / \
5  30
 /   /
2  45
```
Example Deletion (Internal Node)

- Delete (10)

1. Replacing 10 with largest value in left subtree
2. Replacing 5 with largest value in left subtree
3. Deleting leaf
Example Deletion (Internal Node)

- Delete (10)

Replacing 10 with **smallest** value in right subtree

Deleting leaf

Resulting tree
Building Maps w/ Search Trees

• Binary Search trees often used to implement maps
 • Each non-empty node contains
 • Key
 • Value
 • Left and right child

• Need to be able to compare keys
 • Generic type <K extends Comparable<K>>
 • Denotes any type K that can be compared to K’s
BST (Binary Search Tree) Implementation

- Implementing Tree using traditional approach
- Based on the BST definition below let’s see how to implement typical BST Operations (constructor, add, print, find, isEmpty, isFull, size, height, etc.)

```java
public class BinarySearchTree <K extends Comparable<K>, V> {
    private class Node {
        private K key;
        private V data;
        private Node left, right;
        public Node(K key, V data) {
            this.key = key;
            this.data = data;
        }
    }
    private Node root;
}
```

- **See code distribution**: LectureBinaryTreeCode.zip
BST Testing

• How can we test the correctness of BST Methods?
• What is the best approach?