Recursion

CMSC 132, Summer 2015
Object-Oriented Programming II
Anwar Mamat

Recursion

- When one function calls itself directly or indirectly
- A method where the solution to a problem depends on solutions to smaller instances of the same problem.
Factorial

Definition:

\[n! = \begin{cases}
1 & \text{if } n = 0, \\
(n-1)! \times n & \text{if } n > 0
\end{cases} \]

5! =?

\[
\begin{align*}
5! &= 5 \times 4! \\
4! &= 4 \times 3! \\
3! &= 3 \times 2! \\
2! &= 2 \times 1! \\
1! &= 1
\end{align*}
\]

Greatest Common Divisor

- gcd: Find largest integer \(d \) that evenly divides into \(p \) and \(q \) \textbf{Euclid's algorithm. [300 BCE]}

\[
gcd(p, q) = \begin{cases}
p & \text{if } q = 0 \\
gcd(q, p \mod q) & \text{otherwise}
\end{cases}
\]

\[
gcd(4032, 1272) = gcd(1272, 216) = gcd(216, 192) = gcd(192, 24) = gcd(24, 0) = 24.
\]

4032 = 3 \times 1272 + 216
Greatest Common Divisor

- gcd: Find largest integer d that evenly divides into p and q. **Euclid's algorithm. [300 BCE]**

\[
\text{gcd}(p, q) = \begin{cases}
p & \text{if } q = 0 \\
\text{gcd}(q, p \mod q) & \text{otherwise}
\end{cases}
\]

Java implementation.

```java
public static int gcd(int p, int q) {
    if (q == 0) return p;
    else return gcd(q, p % q);
}
```

Towers of Hanoi

Towers of Hanoi

• Move all the discs from the leftmost peg to the rightmost one.
 – Only one disc may be moved at a time.
 – A disc can be placed either on empty peg or on top of a larger disc

Towers of Hanoi Legend

• Q. Is world going to end (according to legend)?
 – 64 golden discs on 3 diamond pegs.
 – World ends when certain group of monks accomplish task.

• Q. Will computer algorithms help
Let’s move disks

Move one disk
Move two disks

Move three disks
Move four disks

1. Move n-1 disks from A->B
2. Move the largest disk to C
3. Move n-1 disks from B->C

Move n disks
Towers of Hanoi: Recursive Solution

```java
public class TowersOfHanoi {
    public static void solve(int n, String A, String B, String C) {
        if (n == 1) {
            System.out.println(A + " -> " + C);
        } else {
            solve(n - 1, A, C, B);
            System.out.println(A + " -> " + C);
            solve(n - 1, B, A, C);
        }
    }
    public static void main(String[] args) {
        int discs = 3;
        solve(discs, "A", "B", "C");
    }
}
```

Remarkable properties of recursive solution

- Takes 2^n steps to solve n disc problem.
- Takes 585 billion years for $n = 64$ (at rate of 1 disc per second).
- Reassuring fact: any solution takes at least this long
Fibonacci Number

Fibonacci numbers: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34

\[F_n = \begin{cases}
0 & \text{if } n = 0 \\
1 & \text{if } n = 1 \\
F_{n-1} + F_{n-2} & \text{otherwise}
\end{cases} \]

Fibonacci rabbits

A natural for recursion?

```java
public static long F(int n) {
    if (n == 0) return 0;
    if (n == 1) return 1;
    return F(n-1) + F(n-2);
}
```

spectacularly inefficient code

Observation. It takes a really long time to compute \(F(50) \).
Inefficient Recursion

Fibonacci numbers: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34

Memoized Version of the Fibonacci

```java
public Map<Integer, Integer> fibo;
public int fib(int n) {
    int f1=0, f2=0;
    if (n == 1 || n == 2) return 1;
    else {
        if (fibo.containsKey(n-1)) {
            f1 = fibo.get(n-1);
        } else {
            f1 = fib(n-1);
            fibo.put(n-1, f1);
        }
        if (fibo.containsKey(n-2)) {
            f2 = fibo.get(n-2);
        } else {
            f2 = fib(n-2);
            fibo.put(n-2, f2);
        }
        return f2+f1;
    }
}
```