11.1 RECURSION

Recursion in computer science is a method where the solution to a problem depends on solutions to smaller instances of the same problem.

Listing 1: General format of many recursive algorithms

```java
if (some condition for which the answer is known) {
    return solution; // base case
} else {
    recursive function call // smaller version of the same problem
}
```

11.2 Examples

11.2.1 Factorial

\[
 n! = \begin{cases}
 1 & \text{if } n = 0, \\
 (n-1)! \times n & \text{if } n > 0
\end{cases}
\]

Listing 2: Factorial

```java
public int fact(int n) {
    if (n == 0) return 1;
    return n * fact(n-1);
}
```

11.2.2 GCD

\[
 gcd(a, b) = \begin{cases}
 a & \text{if } b \text{ is } 0 \\
 gcd(b, a \% b) & \text{otherwise}
\end{cases}
\]
11.2.3 Print a linked list

Listing 4: Print linked list

```java
public void print(Node h) {
    if (h == null) {return;}  // base case
    System.out.print(h.data+" , ");
    print(h.next);
}
```

Listing 5: Print linked list in reverse order

```java
public void print(Node h) {
    if (h == null) {return;}  // base case
    print(h.next);
    System.out.print(h.data+" , ");
}
```

11.2.4 The Towers of Hanoi

Legend has it that there were three diamond needles set into the floor of the temple of Brahma in Hanoi. Stacked upon the leftmost needle were 64 golden disks, each a different size, stacked in concentric order, as shown in Figure 11.2. The monks were to transfer the disks from the first needle A to the second needle B, using the third C as necessary. But they could only move one disk at a time, and could never put a larger disk on top of a smaller one. When they completed this task, the world would end!

Figure 11.1: Towers of Hanoi
11.2.4.1 Base case: one disk only

Figure 11.2: One Disk

If there is only one disk, it is trivial. We just move the disk from A to B as shown in Figure 11.3.

Listing 6: One Disk

1. Move from A to B.

Figure 11.3: One Disk

11.2.4.2 Two Disks

You know how to move one disk. Now we move two disks. We have two disks as shown in Figure 11.4.
Here are the steps:

Listing 7: Two Disks

1. Move from A to C.
2. Move from A to B.
3. Move from C to B.

Figure 11.5: Two Disks: Move from A to C
11.2.4.3 Three Disks

You know how to move two disks, right? We just saw it. Now, we move three disks, as shown in Figure 11.11. Here are the steps:
Listing 8: Three Disks

1. Move 2 disks from A to C.
2. Move 1 disk from A to B.
3. Move 2 disk from C to B.

How do you move two disks at once in step 1? Yes, we can move 2 disks using the method described in section 11.2.4.2.

Figure 11.9: Three Disks

Figure 11.10: Three Disks
11.2.4.4 Four or more Disks

You know how to move three disks. Now, we move four disks, as shown in Figure 11.13.

Here are the steps:

Listing 9: Four Disks

1. Move 3 disks from A to C.
2. Move 1 disk from A to B.
3. Move 3 disk from C to B.

How do you move three disks from A to C? We can do that using the exact same method we described in section 11.2.4.3.
If we generalize the method, in order to move \(n \) disks from A to B, the steps are:

Listing 10: \(n \) disks

1. Move \(n-1 \) disks from A to C.
2. Move 1 disk from A to B.
3. Move \(n-1 \) disk from C to B.

Here is the code for the Towers of Hanoi.

Listing 11: Towers of Hanoi

```java
import java.util.Scanner;

public class TowersOfHanoi {
    public void solve(int n, String A, String C, String B) {
        if (n == 1) {
            System.out.println(A + "->" + B);
        } else {
            solve(n - 1, A, B, C);
            System.out.println(A + "->" + B);
            solve(n - 1, C, A, B);
        }
    }

    public static void main(String[] args) {
        TowersOfHanoi towersOfHanoi = new TowersOfHanoi();
        System.out.print("Enter number of discs:");
        Scanner scanner = new Scanner(System.in);
        int discs = scanner.nextInt();
        towersOfHanoi.solve(discs, "A", "C", "B");
    }
}
```
11.2.4.5 How long it will take to move 64 disks?

Let's see how many moves it takes to solve this problem, as a function of \(n \), the number of disks to be moved.

<table>
<thead>
<tr>
<th>(n)</th>
<th>Number of disk-moves required</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>15</td>
</tr>
<tr>
<td>5</td>
<td>31</td>
</tr>
<tr>
<td>(\ldots)</td>
<td>(\ldots)</td>
</tr>
<tr>
<td>(i)</td>
<td>(2^i - 1) (a big number)</td>
</tr>
</tbody>
</table>

11.2.5 Palindrome

Listing 12: Palindrome

```java
public static boolean palindrome(String s){
    if(s.length() == 1 || s.length() == 0){
        return true;
    }
    if(s.charAt(0) != s.charAt(s.length()-1)) return false;
    return palindrome(s.substring(1, s.length()-1));
}
```

11.2.6 Fibonacci

Listing 13: Fibonacci

```java
// recursive implementation of Fibonacci. Extremely slow
public static int fib1(int n){
    System.out.println("working hard...");
    if(n == 1) return 1;
    if(n == 2) return 1;
    return fib1(n-1) + fib1(n-2);
}
```

```java
// iterative implementation of Fibonacci. Linear time
public static int fib2(int n){
    int a = 0;
    int b = 1;
    int t = 1;
    for(int i =1; i < n; i++){
        t = a + b;
        a = b;
        b = t;
    }
    return t;
}
```
11.2.7 Recursive Tree

http://introcs.cs.princeton.edu/java/23recursion/Tree.java.html

11.2.8 Maze

http://algs4.cs.princeton.edu/41undirected/Maze.java.html