1. Regular expressions and languages
 a. From the perspective of formal language theory, what is a language?
 Set of strings
 b. Given the language \(A = \{ "aa", "c" \} \) and \(B = \{ "b" \} \), what is the language \(AB \)?
 \(\{ "aab", "cb" \} \)
 c. Given the language \(A = \{ "aa", "c" \} \), what is the language \(A^0 \)?
 \(\{ \varepsilon \} \)
 d. Given the language \(A = \{ "aa", "c" \} \), what is the language \(A^2 \)?
 \(\{ "aaaa", "cc", "aac", "caa" \} \)
 e. Given the language \(A = \{ "aa", "c" \} \), what is the language \(A^* \)?
 \(\{ \varepsilon, "aa", "c", "aaaa", "cc", "aac", "caa", "aaaaaa" \ldots \} \)
 f. Give a regular expression for all binary numbers including the substring “101”.
 \((01)^*101(01)^*\)
 g. Give a regular expression for all binary numbers with an even number of 1’s.
 \((0*10*1)^*0^* \text{ or } 0*(10*10*)^*\)
 h. Give a regular expression for all binary numbers that don’t include “000”.
 \((01 | 001 | 1)^*(0 | 00 | \varepsilon)\)

2. Finite automata
 a. When does a NFA accept a string?
 If there any path for the string that ends at a final state for the NFA
 b. How long could it take to reduce a NFA with \(n \) states and \(t \) transitions to a DFA?
 \(2^n \)
 c. Give a NFA that only accepts binary numbers including the substring “101”.

```
 0,1

0,1

1 2 3 4 5 6
"\varepsilon" 1 0 1 0,1
```

d. Give a NFA that only accepts binary numbers that include either “00” or “11”.

![NFA Diagram](image)

e. Give a NFA that only accepts binary numbers that include both “00” and “11”.

![NFA Diagram](image)

f. What language (or set of strings) is accepted by the following NFA?

![NFA Diagram](image)

\((010)^*(0|\varepsilon)\)

g. Compute the ε-closure of the start state for each of the NFA above.

- For NFA in (c) ε-closure(1) = \{1,2\}
- For NFA in (d) ε-closure(1) = \{1,2,5\}
- For NFA in (e) ε-closure(1) = \{1,2,8\}
- For NFA in (f) ε-closure(A) = \{A,F\}
h. Give a DFA that only accepts binary numbers with an odd number of 1’s.

i. Give a DFA that only accepts binary numbers that include “000”.

j. Give a DFA that only accepts binary numbers that don’t include “000”.
k. What language (or set of strings) is accepted by the following DFA?

Described as a list of strings:
where all underlined strings may have any number of 0s appended

Described as a regular expression: 01 | (1 | 00 | 011)(11 | (0 | 111)0*)

Explanation (for each underlined portion of RE)
• 01 | (1 | 00 | 011)(11 | (0 | 111)0*) from state 1 to 5 and accepts
• 01 | (1 | 00 | 011)(11 | (0 | 111)0*) from state 1 to 2, then…
• 01 | (1 | 00 | 011)(11 | (0 | 111)0*) from state 2 to 7 and accepts
• 01 | (1 | 00 | 011)(11 | (0 | 111)0*) from state 2 to 3, then…
• 01 | (1 | 00 | 011)(11 | (0 | 111)0*) accepts w/ 0 or more 0’s
1. For each regular expression: \(1^*, (0|01)^*0\)
 a) Reduce the RE to an NFA using the algorithm described in class.
 b) Reduce the resulting NFA to a DFA using the subset algorithm.
 c) Show whether the DFA accepts / rejects the strings “1”, “11”, “101”
 d) Minimize the resulting DFA using Hopcroft reduction
 e) Are any 2 of the minimized DFA identical?

\[1^* \Rightarrow \text{NFA} \Rightarrow \text{DFA}\]

Accept / reject
- “1” \(\{3,1,4\} \Rightarrow \{2,4,3,1\}\) accept
- “11” \(\{3,1,4\} \Rightarrow \{2,4,3,1\} \Rightarrow \{2,4,3,1\}\) accept
- “101” \(\{3,1,4\} \Rightarrow \{2,4,3,1\} \Rightarrow \) reject

Minimized DFA
Initial partitions: accept =\{ \{3,1,4\}, \{2,4,3,1\}\} = P1, nonfinal = \(\emptyset\)
- move(\{3,1,4\}, 1) \Rightarrow P1
- move(\{2,4,3,1\}, 1) \Rightarrow P1
No need to split P1, minimization done. After cleanup, minimal DFA is
(0101)^*0 \rightarrow \text{NFA}

(0101)^*0 \rightarrow \text{NFA} \rightarrow \text{DFA}

Accept / reject
- "1" \{9,7,1,3,10,11\} \rightarrow \text{reject}
- "11" \{9,7,1,3,10,11\} \rightarrow \text{reject}
- "101" \{9,7,1,3,10,11\} \rightarrow \text{reject}

Minimized DFA
Initial partitions: accept = \{ \{2,4\ldots\}\} = P1,
nonfinal = \{ \{9,7\ldots\}, \{6,8\ldots\}\} = P2
- move(\{9,7\ldots\}, 0) \rightarrow P1
- move(\{6,8\ldots\}, 0) \rightarrow P1
- move(\{9,7\ldots\}, 1) \rightarrow \text{reject}
- move(\{6,8\ldots\}, 1) \rightarrow \text{reject}

No need to split P2, minimization done. After cleanup, minimal DFA
(different from previous minimal DFA) is