1. OCaml and Functional Programming
 a. Define functional programming
 b. Define imperative programming
 c. Define higher-order functions
 d. Describe the relationship between type inference and static types
 e. Describe the properties of OCaml lists
 f. Describe the properties of OCaml tuples
 g. Define pattern variables in OCaml
 h. Describe the usage of “_” in OCaml
 i. Describe polymorphism
 j. Write a polymorphic OCaml function
 k. Describe variable binding
 l. Describe scope
 m. Describe lexical scoping
 n. Describe dynamic scoping
 o. Describe environment
 p. Describe closure
 q. Describe currying

2. OCaml Types & Type Inference
 Give the type of the following OCaml expressions:
 a. []
 b. 1::[]
 c. 1::2::[]
 d. [1;2;3]
 e. [[1];[1]]
 f. (1)
 g. (1,"bar")
 h. (1,[2], ["foo","bar"])
 i. [(1,2,"foo");(3,4,"bar")]
 j. let f x = 1
 k. let f (x) = x *. 3.14
 l. let f (x,y) = x
 m. let f (x,y) = x+y
 n. let f (x,y) = (x,y)
 o. let f (x,y) = [x,y]
 p. let f x y = 1
 q. let f x y = x*y
 r. let f x y = x::y
 s. let f x = match x with [] -> 1
 t. let f x = match x with (y,z) -> y+z
 u. let f (x::_) = x
 v. let f (_,:y) = y
 w. let f (x::y::_) = x+y
x. let f = fun x -> x + 1
y. let rec x = fun y -> x y
z. let rec f x = if (x = 0) then 1 else 1+f (x-1)
aa. let f x y z = x+y+z in f 1 2 3
bb. let f x y z = x+y+z in f 1 2
cc. let f x y z = x+y+z in f
dd. let rec f x = match x with
 [] -> 0
 | (_::t) -> 1 + f t
e. let rec f x = match x with
 [] -> 0
 | (h::t) -> h + f t
ff. let rec f = function
 [] -> 0
 | (h::t) -> h + (2*(f t))
gg. let rec func (f, l1, l2) = match l1 with
 [] -> []
 | (h1::t1) -> match l2 with
 [] -> [f h1]
 | (h2::t2) -> [f h1; f h2]

3. OCaml Types & Type Inference
Write an OCaml expression with the following types:

a. int list
b. int * int
c. int -> int
d. int * int -> int
e. int -> int -> int
f. int -> int list -> int list
g. int list list -> int list
h. ‘a -> ‘a
i. ‘a * ‘b -> ‘a
j. ‘a -> ‘b -> ‘a
k. ‘a -> ‘b -> ‘b
l. ‘a list * ‘b list -> (‘a * ‘b) list
m. int -> (int -> int)
n. (int -> int) -> int
o. (int -> int) -> (int -> int) -> int
p. (‘a -> ‘b) * (‘c * ‘c -> ‘a) * ‘c -> ‘b
4. OCaml Programs

What is the value of the following OCaml expressions? If an error exists, describe the error.

a. 2 ; 3
b. 2 ; 3 + 4
c. (2 ; 3) + 4
d. if 1<2 then 3 else 4
e. let x = 1 in 2
f. let x = 1 in x+1
g. let x = 1 in x ; x+1
h. let x = (1, 2) in x ; x+1
i. (let x = (1, 2) in x) ; x+1
j. let x = 1 in let y = x in y
k. let x = 1 let y = 2 in x+y
l. let x = 1 in let x = x+1 in let x = x+1 in x
m. let x = x in let x = x+1 in let x = x+1 in x
n. let rec x y = x in 1
o. let rec x y = y in 1
p. let rec x y = y in x 1
q. let x y = fun z -> z+1 in x
r. let x y = fun z -> z+1 in x 1
s. let x y = fun z -> z+1 in x 1 1
t. let x y = fun z -> x+1 in x 1
u. let rec x y = fun z -> x+1 in x 1
v. let rec x y = fun z -> x+y in x 1
w. let rec x y = fun z -> x y in x 1
x. let rec x y = fun z -> x z in x 1
y. let x y = y 1 in 1
z. let x y = y 1 in x
aa. let x y = y 1 in x 1
bb. let x y = y 1 in x fun z -> z + 1
cc. let x y = y 1 in x (fun z -> z + 1)
dd. let a = 1 in let f x y z = x+y+z+a in f 1 2 3
ee. let a = 1 in let f x y z = x+y+z+a in f 1 2 -3
5. OCaml Programming

 a. Write an OCaml function named \textit{fib} that takes an \texttt{int} \(x \), and returns the Fibonacci number for \(x \). Recall that \(\text{fib}(0) = 0, \text{fib}(1) = 1, \text{fib}(2) = 1, \text{fib}(3) = 2 \).

 b. Write a function \textit{find_suffixes} which applied to a list \(\texttt{lst} \) returns a list of all the suffixes of \(\texttt{lst} \). For instance, suffixes \(\texttt{[1;2;5]} = \texttt{[[1;2;5]; [2;5]; [5]]} \)

 c. Write an OCaml function named \textit{map_odd} which takes a function \(f \) and a list \(\texttt{lst} \), applies the function to every other element of the list, starting with the first element, and returns the result in a new list.

 d. Use \textit{map_odd} and \textit{fib} applied to the list \(\texttt{[1;2;3;4;5;6;7]} \) to calculate the Fibonacci numbers for 1, 3, 5, and 7.

 e. Using \textit{map}, write a function \textit{triple} which applied to a list of \texttt{ints} \(\texttt{lst} \) returns a list with all elements of \(\texttt{lst} \) tripled in value.

 f. Using \textit{fold}, write a function \textit{all_true} which applied to a list of \texttt{booleans} \(\texttt{lst} \) returns true only if all elements of \(\texttt{lst} \) are true.

 g. Using \textit{fold} and anonymous helper functions, write a function \textit{product} which applied to a list of \texttt{ints} \(\texttt{lst} \) returns the product of all the elements in \(\texttt{lst} \).

 h. Using \textit{fold} and anonymous helper functions, write a function \textit{find_min} which applied to a list of \texttt{ints} \(\texttt{lst} \) returns the smallest element in \(\texttt{lst} \).

 i. Using the \textit{fold} function and anonymous helper functions, write a function \textit{count_vote} which applied to a list of \texttt{booleans} \(\texttt{lst} \) returns a tuple \((x, y)\) where \(x \) is the number of true elements and \(y \) is the number of false elements.

 j. Using the function \textit{count_vote}, write a function \textit{majority} which applied to a list of \texttt{booleans} \(\texttt{lst} \) returns true if 1/2 or more elements of \(\texttt{lst} \) are true.
6. OCaml Polymorphic Types

Consider a OCaml module Bst that implements a binary search tree:

```ocaml
module Bst = struct
  type bst =
    | Empty
    | Node of int * bst * bst

  let empty = Empty (* empty binary search tree *)

  let is_empty = function (* return true for empty bst *)
    Empty -> true
  | Node (_, _, _) -> false

  let rec insert n = function (* insert n into binary search tree *)
    Empty -> Node (n, Empty, Empty)
  | Node (m, left, right) ->
    if m = n then Node (m, left, right)
    else if n < m then Node (m, (insert n left), right)
    else Node (m, left, (insert n right))

  (* Implement the following functions
     val min : bst -> int
     val remove : int -> bst -> bst
     val fold : ('a -> int -> 'a) -> 'a -> bst -> 'a
     val size : bst -> int
   *)

  let rec min = (* return smallest value in bst *)
  let rec remove n t = (* tree with n removed *)
  let rec fold f a t = (* apply f to nodes of t in inorder *)
  let size t = (* # of non-empty nodes in t *)
end
```

a. Is insert tail recursive? Explain why or why not.
b. Implement min as a tail-recursive function. Raise an exception for an empty bst. Any reasonable exception is fine.
c. Implement remove. The result should still be a binary search tree.
d. Implement fold as an inorder traversal of the tree so that the code
   ```ocaml
   List.rev (fold (fun a m -> m::a) [] t)
   ```
 will produce an (ordered) list of values in the binary search tree.
e. Implement size using fold.