CMSC330 Fall 2011 Quiz #3

Name ____________________________

Discussion Time (circle one): 9am 10am 11am 12pm 1pm 2pm

Do not start this quiz until you are told to do so.

Instructions
- You have 20 minutes for this quiz.
- This is a closed book exam. No notes or other aids are allowed.
- Answer essay questions concisely using 2-3 sentences. Longer answers are not necessary and a penalty may be applied.
- For partial credit, show all of your work and clearly indicate your answers.
- Write neatly. Credit cannot be given for illegible answers.

1. (8 pts) OCaml Types and Type Inference
 a. (3 pts) Give the type of the following OCaml expression

 \[
 \text{fun } x \rightarrow [x \ 1] \quad \text{Type} =
 \]

 b. (3 pts) Write an OCaml expression with the following type

 ‘a list -> ‘a \quad \text{Code} =

 c. (2 pts) Give the value of the following OCaml expressions. If an error exists, describe the error.

 \[
 \text{(fun } x \rightarrow \text{fun } y \rightarrow x+y) \ 6 \ 4 \quad \text{Value} =
 \]
2. (16 pts) OCaml Programming

Solve the following OCaml programming problems. The following rules apply to both parts of this question. You are allowed to use List.rev (reverses a list) and the (curried) map and fold functions provided, but no other OCaml library functions. Your solution must run in O(n) time for input lists of length n (note that using append instead of prepend will usually make your algorithm O(n^2)).

a. (8 pts) Write a curried function \texttt{findKth} which when given a number \(k\) and a list \(\textit{lst}\) of int (key, value) pairs, returns the \(k\)th value in the list. You may use map or fold if you wish, but it is not required. You may assume \(\textit{lst}\) contains at least \(k\) pairs.

Example:
\[
\texttt{findKth 1 [(1,2);(5,9);(9,3)]} = 2 \quad \text{\textit{// since 2 is 1st value}} \\
\texttt{findKth 2 [(1,2);(5,9);(9,3)]} = 9 \quad \text{\textit{// since 9 is 2nd value}}
\]
b. (8 pts) Using either map or fold and an anonymous function, write a curried function `findGreaterThan` which when given a number `n` and a list of ints `lst`, returns a list of all elements of `lst` greater than `n` (maintaining their relative ordering). You may assume `(x > y)` returns true when `x` is larger than `y`.

Example:

```
findGreaterThan 20 [33;18;21;19] = [33;21]
findGreaterThan 65 [33;18;21;19] = []
```
3. (6 pts) Context Free Grammars
 Consider the following grammar:

 \[
 S \rightarrow E+E \mid E*E \\
 E \rightarrow 0 \mid 1 \mid n \mid (S)
 \]

 a. (2 pts) What is the set of strings accepted by this grammar?

 b. (4 pts) Provide a *leftmost* derivation of the string “(n+1)*n” for this grammar.