CMSC330 Fall 2015 Quiz #4

Name __

Discussion Time (circle one): 10am 11am 12pm 1pm 2pm 3pm

Discussion TA (circle one): Adam Amelia Maria Chris Samuel Josh Michael Max Candice

Instructions
• Do not start this test until you are told to do so!
• You have 15 minutes for this quiz.
• This is a closed book exam. No notes or other aids are allowed.
• For partial credit, show all of your work and clearly indicate your answers.

1. (5 pts) Use the operational semantics rules given in class, included here for your reference. Show the derivation for
 \(\text{if } 0 = 1 \text{ then } 2 + 3 \text{ else } 2 - 3 \)

AST
\[
a ::= n | a + a | a - a \\
b ::= a = a | \text{if } b \text{ then } a \text{ else } a
\]

Rules:
\[
\begin{array}{|c|}
\hline
- \\
\hline
n \Rightarrow n \\
\hline
\end{array}
\]
\[
\begin{array}{|c|}
\hline
E_1 \Rightarrow \text{tt} \quad E_2 \Rightarrow v_2 \\
\hline
\text{if } E_1 \text{ then } E_2 \text{ else } E_3 \Rightarrow v_2 \\
\hline
\end{array}
\]
\[
\begin{array}{|c|}
\hline
E_1 \Rightarrow f \\
\hline
E_2 \Rightarrow v_2 \\
\hline
E_3 \Rightarrow v_3 \\
\hline
\text{if } E_1 \text{ then } E_2 \text{ else } E_3 \Rightarrow v_3 \\
\hline
\end{array}
\]
\[
\begin{array}{|c|}
\hline
E_1 \Rightarrow v_1 \\
\hline
E_2 \Rightarrow v_2 \\
\hline
E_1 \text{ op } E_2 \Rightarrow v_1 \text{ op } v_2 \\
\hline
\end{array}
\]
2. (5 pts) Given these parse functions, write the corresponding CFG (S and L are nonterminals, and a,b,c, ε are terminals)

```c
parse_S() {
    match("c");
    match("a");
    parse_L();
}
parse_L() {
    if (lookahead == "c") {
        match("c");
        parse_L();
        match("c");
    } else if (lookahead == "b") {
        match("b");
        parse_L();
    } else ;
}
```

3. Evaluate the following lambda-expressions as much as possible. Show each beta-reduction/alpha conversion explicitly.

 (1) (3 pts) \((\lambda x.\lambda y.\lambda z.y \; z \; x) \; y \; a \; b\)

 (2) (3 pts) \((\lambda z.z \; z) \; (\lambda x.x) \; b \; c\)

 (3) (4 pts) \((\lambda x.\lambda y.\lambda z.x \; y \; z) \; (\lambda q.\lambda r.r) \; a \; b\)