
Binary	Tree	- Recursion
Discussion	06/29/2017



Recursion

• Recursion	is	the	strategy	for	solving	problems	where	a	method	calls	
itself.
• Approach

- If	the	problem	is	straightforward,	solve	it	directly	(base	case	– the	last	step	to	
stop	the	recursion).
- Else	(recursive	step)

1. Simplify	the	problem	into	smaller	problems.
2. Solve	the	simpler	problems	using	the	same	algorithm.
3. Combine	the	solutions	of	the	smaller	problems	that	solve	the	general	problem.



Recursion	– Array	Addition	Example

• Given	an	array	of	[2,	3,	4,	5,	6,	7],	implement	a	recursive	method	add(int[]	
a)	that	calculates	the	sum	of	all	integers	in	the	array.
• Answer:
public	int add(int[]	a)	{

return	add_helper(a,	0);						//Need	a	helper	method	to	access	each	
//element

}
private	int add_helper(int[]	a,	int index)	{

if	(index	==	a.length - 1)	return	a[index];	//Base	case
else	return	a[index]	+	add_helper(a,	++index);	//Recursive	step

}



Binary	Tree

• Definition:	Binary	Tree	is	a	data	structure	that	has	a	root	node	and	
each	node	in	the	tree	has	at	most	two	subtrees,	which	are	referred	to	
the	left	child	and	right	child.
• Example:



Binary	Tree	Traversal

• Breadth-first	traversal	(BFS)	visits	node	according	to	how	far	away	
from	the	root.
• Depth-first	traversal	(DFS)	visits	nodes	as	far	ahead	as	possible	before	
backing	up.	There	are	three	types	of	DFS	for	binary	trees:
• Preorder	traversal	visits	a	node,	then	its	left	child,	then	its	right	child.
• Inorder traversal	visits	a	node’s	left	child,	then	the	node	itself,	then	its	right	
child.
• Postorder traversal	visits	a	node’s	left	child,	then	its	right	child,	then	itself.



Binary	Tree	Traversal	Example

Breadth-first:	

Preorder:

Inorder:

Postorder:



Binary	Tree	Traversal	Example

Breadth-first:	4,	3,	6,	5,	7

Preorder:	4,	3,	6,	5,	7

Inorder:	3,	4,	5,	6,	7

Postorder:	3,	5,	7,	6,	4

Visualization	link:	https://visualgo.net/en/bst



Which	one	of	these	is	breadth-first	traversal?

A. 1,	2,	3,	4,	5,	6,	7,	8,	9
B. 5,	2,	6,	1,	4,	8,	3,	7,	9
C. 1,	3,	4,	2,	7,	9,	8,	6,	5
D. 5,	3,	2,	4,	3,	6,	8,	7,	9	



Which	one	of	these	is	breadth-first	traversal?

A. 1,	2,	3,	4,	5,	6,	7,	8,	9
B. 5,	2,	6,	1,	4,	8,	3,	7,	9
C. 1,	3,	4,	2,	7,	9,	8,	6,	5
D. 5,	3,	2,	4,	3,	6,	8,	7,	9	



Which	one	of	these	is	postorder traversal?

A. 1,	3,	4,	2,	7,	9,	8,	6,	5
B. 5,	2,	6,	1,	4,	8,	3,	7,	9
C. 1,	2,	3,	4,	5,	6,	7,	8,	9
D. 5,	3,	2,	4,	3,	6,	8,	7,	9	



Which	one	of	these	is	postorder traversal?

A. 1,	3,	4,	2,	7,	9,	8,	6,	5
B. 5,	2,	6,	1,	4,	8,	3,	7,	9
C. 1,	2,	3,	4,	5,	6,	7,	8,	9
D. 5,	3,	2,	4,	3,	6,	8,	7,	9	



Which	one	of	these	is	inorder traversal?

A. 1,	2,	3,	4,	5,	6,	7,	8,	9
B. 5,	2,	6,	1,	4,	8,	3,	7,	9
C. 1,	3,	4,	2,	7,	9,	8,	6,	5
D. 5,	3,	2,	4,	3,	6,	8,	7,	9	



Which	one	of	these	is	inorder traversal?

A. 1,	2,	3,	4,	5,	6,	7,	8,	9
B. 5,	2,	6,	1,	4,	8,	3,	7,	9
C. 1,	3,	4,	2,	7,	9,	8,	6,	5
D. 5,	3,	2,	4,	3,	6,	8,	7,	9	



Which	one	of	these	is	preorder	traversal?

A. 1,	3,	4,	2,	7,	9,	8,	6,	5
B. 5,	2,	6,	1,	4,	8,	3,	7,	9
C. 1,	2,	3,	4,	5,	6,	7,	8,	9
D. 5,	3,	2,	4,	3,	6,	8,	7,	9	



Which	one	of	these	is	preorder	traversal?

A. 1,	3,	4,	2,	7,	9,	8,	6,	5
B. 5,	2,	1,	4,	3,	6,	8,	7,	9
C. 1,	2,	3,	4,	5,	6,	7,	8,	9
D. 5,	3,	2,	4,	3,	6,	8,	7,	9	



Tree	Construction	Algorithm

1. Get	the	root	from	the	pre	(post)	order	traversal.
2. Locate	the	root	in	the	inorder traversal.
3. Determine	the	sizes	of	your	left	and	right	subtrees	from	the	inorder

traversal,	and	obtain	the	inorder traversal	of	the	left	and	right	
subtrees.

4. Compute	the	split	index	of	your	pre	(post)	order	traversal	to	get	the	
left	and	right	preorder	traversal	of	your	left	and	right	subtrees.

5. Create	the	root	node	and	solve	recursively	for	its	left	and	right	
subtrees.



Binary	Tree

Exercise	1:	Implement	findMaxSum()	method	that	find	the	maximum	sum	of	all	paths	(each	path	has	
their	own	sum	and	find	max	sum	of	those	sums).	For	example,	the	path	1->2->5	makes	the	max	sum	
of	8	and	8	is	the	result.
int findMaxSum(Node	n)	{

}



Binary	Tree

Exercise	1:	Implement	findMaxSum()	method	that	find	the	maximum	sum	of	all	paths	(each	path	
has	their	own	sum	and	find	max	sum	of	those	sums).	For	example,	the	path	1->2->5	makes	sum	
of	8;	1->2>4	makes	sum	of	7;	and	1->3	makes	sum	of	4.	Therefore,	8	is	the	result.

int findMaxSum(Node	n)	{
if	(n	==	null)	return	0;
else	{

int sumleft =	findMaxSum(n.left);
int sumright =	findMaxSum(n.right);
if	(sumleft >	sumright)	return	n.data +	sumleft;
else	return	n.data +	sumright;

}
}



Binary	Tree

• Exercise	2:	Implement	mirror()	method	that	replaces	the	current	
binary	tree	with	its	own	mirror	version.

void	mirror(Node	n)	{

}	



Binary	Tree

• Exercise	2:	Implement	mirror()	method	that	replaces	the	current	binary	tree	with	its	own	
mirror	version.

void	mirror(Node	n)	{
if	(n	!=	null)	{

mirror(n.left);
mirror(n.right);
Node	temp	=	n.right;
n.right =	n.left;
n.left =	temp;

}
}	


