
CMSC	132
Week2	Lab1
Comparable	vs	Comparator

clone()
finalize()



Student	Class

public class Student {

String first;

String last;

int id;

public Student(String first, String last, int id) {

this.first = first;

this.last = last;

this.id = id;

}

}



Comparable	vs	Comparator

• Both	are	interfaces
• Comparable defines	the	natural	ordering	for	class	objects

• Has	only	one	method	compareTo
• Comparison	by	lastname for	Student class
public class Student implements Comparable<Student>{

……
@Override
public int compareTo(Student o) {

return this.last.compareTo(o.last);
}

}



Comparable	vs	Comparator

• How	can	we	add	more	than	one	comparison	method	?
• Define	a	Comparator class	for	each	comparison	method
• Has	only	one	method	compare

public class StudentComparatorByID implements 
Comparator<Student>{

@Override
public int compare(Student o1, Student o2) {

return o1.id - o2.id;
}

}



Comparable	vs	Comparator	– Example

Student s1 = new Student("John", "Locke", 5);

Student s2 = new Student("Mike", "Nickolas", 3);

s1.compareTo(s2);

s2.compareTo(s1);

StudentComparatorByID comp = new StudentComparatorByID();

comp.compare(s1, s2);

comp.compare(s2, s1);

// -ve

// +ve

// -ve

// +ve



Object’s	Class	Methods

• equals()
• toString()
• clone()
• finalize()
• …	etc



clone()

• Method’s	signature
protected Object clone() throws CloneNotSupportedException

• It	is	used	to	make	copy	of	objects
• Example

Student sCopy = (Student)s.clone();

• Default	behavior	throws	an	exception	when	class	is	not	Cloneable
• Unless	you	override	it



clone()	– Student	Class

@Override

protected Object clone() throws CloneNotSupportedException {

return new Student (first, last, id);

}

• Example
Student sCopy = (Student)s.clone();

• Why	don’t	we	use	the	following	?
Student sCopy = s;



finalize()

• Garbage	Collector	(gc)	can	delete	objects	with	no	references
• Orphaned	object

• Before	deleting	an	object,	gc calls	the	object’s	finalizemethod
• For	any	cleanup	required
• Do	anything	special

• Method’s	signature
protected void finalize() throws Throwable {



finalize()	– Student	Class
@Override

protected void finalize() throws Throwable {

System.out.println("I'm gonna die :(");

}

public static void foo(){

// Just creates an object and terminates

Student s = new Student("John", "Luke", 5);

}

public static void main(String[] args) {

foo();

// explicit call for gc to run (runs automatically by default)

System.gc(); 

}



Clicker	Quiz
06/15/2017



1.	Suppose	we	have	a	class	Person	that	overrides	the	
clone()	method
Person	p	=	new	Person();
Person	pCopy =	p.clone();
A. Compiles	with	a	warning
B. Doesn’t	compile
C. Compiles	but	would	cause	runtime	error.
D. Works	just	fine.



1.	Suppose	we	have	a	class	Person	that	overrides	the	
clone()	method
Person	p	=	new	Person();
Person	pCopy =	p.clone();
A. Compiles	with	a	warning
B. Doesn’t	compile
C. Compiles	but	would	cause	runtime	error.
D. Works	just	fine.



2.	True	or	false.	The	default	implementation	of	the	
clone()	method	performs	a	shallow	copy	only.

A. True
B. False



2.	True	or	false.	The	default	implementation	of	the	
clone()	method	performs	a	shallow	copy	only.

A. True
B. False



3.	True	or	false.	The	code	inside	finalize()	will	not	
execute	unless	we	explicitly	call	System.gc().

A. True
B. False



3.	True	or	false.	The	code	inside	finalize()	will	not	
execute	unless	we	explicitly	call	System.gc().

A. True
B. False



4.	True	or	false.	If	we	a	comparator	
StudentComparatorByID,	that	compares	two	Student	
objects,	then	the	Student	class	cannot	implement	the	
Comparable	interface	or	else	we'll	get	a	conflict	
between	the	compareTo method	defined	by	the	
Comparator	and	Comparable	interfaces.
A. True
B. False



4.	True	or	false.	If	we	have	a	comparator	
StudentComparatorByID,	that	compares	two	Student	objects,	
then	the	Student	class	cannot	implement	the	Comparable	
interface	or	else	we'll	get	a	conflict	between	the	compareTo
method	defined	by	the	Comparator	and	Comparable	
interfaces.

A. True
B. False



TODO	- For	the	Time	class

• A	Comparator	class	(compare	only	by	hours)
• A	clone	method
• A	finalize	method	to	the	Time	class	and	see	the	effect	of	running	
System.gc().
• An	equals()	method

• Try	to	work	with	the	same	partner
• Feel	free	to	ask
• Write	some	student	test	cases	for	these	features


