
CMSC	132
Week2	Lab1
Comparable	vs	Comparator

clone()
finalize()



Student	Class

public class Student {

String first;

String last;

int id;

public Student(String first, String last, int id) {

this.first = first;

this.last = last;

this.id = id;

}

}



Comparable	vs	Comparator

• Both	are	interfaces
• Comparable defines	the	natural	ordering	for	class	objects

• Has	only	one	method	compareTo
• Comparison	by	lastname for	Student class
public class Student implements Comparable<Student>{

……
@Override
public int compareTo(Student o) {

return this.last.compareTo(o.last);
}

}



Comparable	vs	Comparator

• How	can	we	add	more	than	one	comparison	method	?
• Define	a	Comparator class	for	each	comparison	method
• Has	only	one	method	compare

public class StudentComparatorByID implements 
Comparator<Student>{

@Override
public int compare(Student o1, Student o2) {

return o1.id - o2.id;
}

}



Comparable	vs	Comparator	– Example

Student s1 = new Student("John", "Locke", 5);

Student s2 = new Student("Mike", "Nickolas", 3);

s1.compareTo(s2);

s2.compareTo(s1);

StudentComparatorByID comp = new StudentComparatorByID();

comp.compare(s1, s2);

comp.compare(s2, s1);

// -ve

// +ve

// -ve

// +ve



Object’s	Class	Methods

• equals()
• toString()
• clone()
• finalize()
• …	etc



clone()

• Method’s	signature
protected Object clone() throws CloneNotSupportedException

• It	is	used	to	make	copy	of	objects
• Example

Student sCopy = (Student)s.clone();

• Default	behavior	throws	an	exception	when	class	is	not	Cloneable
• Unless	you	override	it



clone()	– Student	Class

@Override

protected Object clone() throws CloneNotSupportedException {

return new Student (first, last, id);

}

• Example
Student sCopy = (Student)s.clone();

• Why	don’t	we	use	the	following	?
Student sCopy = s;



finalize()

• Garbage	Collector	(gc)	can	delete	objects	with	no	references
• Orphaned	object

• Before	deleting	an	object,	gc calls	the	object’s	finalizemethod
• For	any	cleanup	required
• Do	anything	special

• Method’s	signature
protected void finalize() throws Throwable {



finalize()	– Student	Class
@Override

protected void finalize() throws Throwable {

System.out.println("I'm gonna die :(");

}

public static void foo(){

// Just creates an object and terminates

Student s = new Student("John", "Luke", 5);

}

public static void main(String[] args) {

foo();

// explicit call for gc to run (runs automatically by default)

System.gc(); 

}



Clicker	Quiz
06/15/2017



1.	Suppose	we	have	a	class	Person	that	overrides	the	
clone()	method
Person	p	=	new	Person();
Person	pCopy =	p.clone();
A. Compiles	with	a	warning
B. Doesn’t	compile
C. Compiles	but	would	cause	runtime	error.
D. Works	just	fine.
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2.	True	or	false.	The	default	implementation	of	the	
clone()	method	performs	a	shallow	copy	only.

A. True
B. False
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3.	True	or	false.	The	code	inside	finalize()	will	not	
execute	unless	we	explicitly	call	System.gc().

A. True
B. False
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4.	True	or	false.	If	we	a	comparator	
StudentComparatorByID,	that	compares	two	Student	
objects,	then	the	Student	class	cannot	implement	the	
Comparable	interface	or	else	we'll	get	a	conflict	
between	the	compareTo method	defined	by	the	
Comparator	and	Comparable	interfaces.
A. True
B. False
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TODO	- For	the	Time	class

• A	Comparator	class	(compare	only	by	hours)
• A	clone	method
• A	finalize	method	to	the	Time	class	and	see	the	effect	of	running	
System.gc().
• An	equals()	method

• Try	to	work	with	the	same	partner
• Feel	free	to	ask
• Write	some	student	test	cases	for	these	features


