
CMSC 132: Object-Oriented
Programming II

Inheritance

1CMSC 132 Summer 2017

Inheritance
• Classes can be derived from other classes, thereby

inheriting fields and methods from those classes.
• A class that is derived from another class is called a

subclass (also a derived class, extended class, or
child class).

• The class from which the subclass is derived is
called a superclass (also a base class or a parent
class).

• Derived (Child) class can be base (parent) class

2
CMSC 132 Summer 2017

Inheritance

3

Shape

Circle RectangleTriangle

Right -Triangle Equilateral -
Triangle

Motivation: In real life objects have a hierarchical structure:

Square

CMSC 132 Summer 2017

Inheritance
Define a general class
Later, define specialized classes based on
the general class
These specialized classes inherit properties
from the general class

4

Person

Student Employee

Faculty StaffUndergrad Grad

CMSC 132 Summer 2017

Inheritance cont.

What are some properties of a Person?
• name, height, weight, age

How about a Student?
• ID, major, gpa

Does a Student have a name, height, weight,
and age?
• Student inherits these properties from Person

5
CMSC 132 Summer 2017

is-a relationship
This inheritance relationship is known as an is-a
relationship

A Grad student is a Student
A Student is a Person.

Is a Person a Student? – Not necessarily!

6
CMSC 132 Summer 2017

Why inheritance is useful

Enables you to define shared properties and
actions once
Derived classes can perform the same actions
as base classes without having to redefine the
actions
If desired, the actions can be redefined –
method overriding

7
CMSC 132 Summer 2017

Person Class
public class Person {

private String name;
public Person(){
name = "noname";

}
public Person(String name){
this.name = name;

}
public void setName(String newName){

name = newName;
}
public String getName(){

return name;
}
@Override
public String toString(){

return "Name:"+name;
}

}

8

Person

-name
+Person()
+Person(String name):void
+setName(String name) : void
+getName() : String

CMSC 132 Summer 2017

Student Class
public class Student extends Person{
private int id;
public Student() {
id = 0;

}
public Student(String name, int id) {

super(name);
this.id = id;

}
public void setID(int idNumber) {

id = idNumber;
}
public int getID(){

return id;
}
@Override
public String toString(){

return "Id:"+ id +"\tName:" +
getName();

}
} 9

Person

-name
+Person()
+Person(String name):void
+setName(String name) : void
+getName() : String

Student

-id

+Student()
+Student(String name, int id) : void
+setID(int id) : void
+getID(): int
+toString() : String

CMSC 132 Summer 2017

Dissecting the Student Class
• Extends: To specify that Student is a derived class (subclass) of Person

we add the descriptor “extends” to the class definition:
• public class Student extends Person { … }

• Notice that a Student class
• Inherits everything from the Person class
• A Student IS-A Person (wherever a Person is needed, we can use a

Student).
• super(): When initializing a new Student object, we need to initialize its

base class (or superclass). This is done by calling super(…). For
example, super(name) invokes the constructor Person(name)
• super(…) must be the first statement of your constructor
• If you do not call super(), Java will automatically invoke the base

class’s default constructor
• What if the base class’s default constructor is undefined? Error
• You must use “super(…)”, not “Person(…)”.

10
CMSC 132 Summer 2017

Memory Layout and Initialization Order
• When you create a new derived class object:

• Java allocates space for both the base class instance variables and
the derived class variables

• Java initializes the base class variables first, and then initializes the
derived class variables

• Example:
Person ted = new Person("Ted Goodman");
Student bob = new Student("Bob Goodstudent", 100);

11

name Ted Goodman

Bob Goodstudent

100

ted

name

id
bob

CMSC 132 Summer 2017

Inheritance
• Inheritance: Since Student is derived from Person, a Student object

can invoke any of the Person methods, it inherits them
Student bob = new Student("Bob Goodstudent", 100);
String bobsName = bob.getName());
bob.setName("Robert Goodstudent");
System.out.println("Bob's new info: " + bob.toString());

A Student “is a” Person:
• By inheritance a Student object is also a Person object. We can

use a Student reference anywhere that a Person reference is
needed

Person robert = bob; // Okay: A Student is a Person

• We cannot reverse this. (A Person need not be a
Student.)
Student bob2 = robert; // Error! Cannot convert Person to Student

12
CMSC 132 Summer 2017

Overriding Methods
• New Methods: A derived class can define entirely new

instance variables and new methods (e.g. gpa and
getGpa())

• Overriding: A derived class can also redefine existing
methods

public class Person {
…
public String toString() { … }

}
public class Student extends Person {

…
public String toString() { … }

}
Student bob = new Student("Bob Goodstudent", 100);
System.out.println("Bob's info: " + bob);

13

The derived class can
redefine this method.

Since bob is of type Student,
this invokes the Student toString()

CMSC 132 Summer 2017

Overriding and Overloading
• Don’t confuse method overriding with method overloading.

Overriding: occurs when a derived class defines a method with the same
name and parameters as the base class.

Overloading: occurs when two or more methods have the same name, but
have different parameters (different signature).

Example:
public class Person {

public void setName(String n) { name = n; }
…

}
public class Faculty extends Person {

public void setName(String n) {
super.setName(“The Evil Professor ” + n);

}
public void setName(String first, String last) {

super.setName(first + “ ” + last);
}

}
14

The base class defines
a method setName()

Overriding: Same name and
parameters; different
definition.

Overloading: Same name, but
different parameters.

CMSC 132 Summer 2017

Quiz 1: Output of following program
class Test {
int i;

}
class Main {
public static void main(String args[]){

Test t;
System.out.println(t.i);

}
}

CMSC 132 Summer 2017 15

A. 0
B. garbage value
C. compiler error
D. runtime error

Quiz 1: Output of following program
class Test {
int i;

}
class Main {
public static void main(String args[]){

Test t;
System.out.println(t.i);

}
}

CMSC 132 Summer 2017 16

A. 0
B. garbage value
C. compiler error: variable not initialized
D. runtime error

Quiz 2: Output of following program
class Test {
int i;

}
class Main {
public static void main(String args[]){

Test t = null;
System.out.println(t.i);

}
}

CMSC 132 Summer 2017 17

A. 0
B. garbage value
C. compiler error
D. runtime error

Quiz 2: Output of following program
class Test {
int i;

}
class Main {
public static void main(String args[]){

Test t = null;
System.out.println(t.i);

}
}

CMSC 132 Summer 2017 18

A. 0
B. garbage value
C. compiler error
D. runtime error: Null pointer exception

Quiz 3: Output of following program
class Base{

void display() {System.out.print(”Base ");}
}
class Child extends Base{

void display(){System.out.print(”Child ");}
}
Base b= new Base();
Child c = new Child ();
Base ref = b;
ref.display();
ref = c;
ref.display();

CMSC 132 Summer 2017 19

A. Compilation error
B. Base Child
C. Child Base
D. Runtime error

Quiz 3: Output of following program
class Base{

void display() {System.out.print(”Base ");}
}
class Child extends Base{

void display(){System.out.print(”Child ");}
}
Base b= new Base();
Child c = new Child ();
Base ref = b;
ref.display();
ref = c;
ref.display();

CMSC 132 Summer 2017 20

A. Compilation error
B. Base Child
C. Child Base
D. Runtime error

Quiz 4: Output of following program
class Test{

int a = 1;
int b = 2;
Test func(Test obj){

Test obj3 = new Test();
obj3 = obj;
obj3.a = obj.a++ + ++obj.b;
obj.b = obj.b;
return obj3;

}
main(){

Test obj1 = new Test();
Test obj2 = obj1.func(obj1);
System.out.print(obj1.a + ”,”+ obj1.b+”,”);
System.out.print(obj2.a + ”,” + obj2.b+”,”);

}
}
CMSC 132 Summer 2017 21

A. 1,2,4,3,
B. 4,3 4,3
C. Error

Quiz 4: Output of following program
class Test{

int a = 1;
int b = 2;
Test func(Test obj){

Test x = new Test();
x = obj;
x.a = obj.a++ + ++obj.b;
obj.b = obj.b;
return x;

}
main(){

Test obj1 = new Test();
Test obj2 = obj1.func(obj1);
System.out.print(obj1.a + ”,”+ obj1.b+”,”);
System.out.print(obj2.a + ”,” + obj2.b+”,”);
}

}

CMSC 132 Summer 2017 22

A. 1,2,4,3,
B. 4,3 4,3
C. Error

Overriding Variables: Shadowing
• We can override methods, can we override instance variables too?
• Answer: Yes, it is possible, but not recommended

• Overriding an instance variable is called shadowing, because it
makes the base instance variables of the base class inaccessible.
(We can still access it explicitly using super.varName).

public class Person { public class Staff
extends Person {

String name; String name;
// … // … name refers to

Staff’s name
} }

• This can be confusing to readers, since they may not have noticed
that you redefined name. Better to just pick a new variable name

23
CMSC 132 Summer 2017

Shadowing example

CMSC 132 Summer 2017 24

class Base {
public int x;
public Base(){x = 10;}
public void foo(){return x);}
}

class Derived extends Base {
public int x;
public Derived(){ x = 20;}
public void foo(){return (x + “\t” + super.x);}
}

Derived d = new Derived();
d.foo();

Shadowing example

CMSC 132 Summer 2017 25

class Base {
public int x;
public Base(){x = 10;}
public void foo(){return x);}
}

class Derived extends Base {
public int x;
public Derived(){ x = 20;}
public void foo(){return (x + “\t” + super.x);}
}

Derived d = new Derived();
Base b = d;
b.foo();

Shadowing example

CMSC 132 Summer 2017 26

class Base {
public int x;
public Base(){x = 10;}
public void foo(){return x);}
}

class Derived extends Base {
public int x;
public Derived(){ x = 20;}
public void foo(){return (x + “\t” + super.x);}
}

Derived d = new Derived();
Base b = d;
d.x;
b.x;

super and this
• super: refers to the base class object

• We can invoke any base class constructor using super(…).
• We can access data and methods in the base class (Person)

through super. E.g., toString() and equals() invoke the
corresponding methods from the Person base class, using
super.toString() and super.equals().

• this: refers to the current object
• We can refer to our own data and methods using “this.” but this

usually is not needed
• We can invoke any of our own constructors using this(…). As

with the super constructor, this can only be done within a
constructor, and must be the first statement of the constructor.
Example:

public Fraction(int n) {
this(n,1);

}

27
CMSC 132 Summer 2017

Memory Layout
class Base{
private int a;
protected int b;
protected int c;
protected void m1(){}
public void m2(){}

}

CMSC 132 Summer 2017 28

class Child extends Base{
private int d;
public void m1(){}
public void m3(){}

}

Base

Child

The Java Virtual Machine does not mandate any particular internal
structure for objects.

Memory Layout
class Base{
private int a;
protected int b;
protected int c;
protected void m1(){}
public void m2(){}

}

CMSC 132 Summer 2017 29

class Child extends Base{
private int d;
public void m1(){}
public void m3(){}

}

Pointer to m1()
Pointer to m2()

VTABLE
Pointer to
vtable
a
b
c

Base object

Memory Layout
class Base{
private int a;
protected int b;
protected int c;
protected void m1(){}
public void m2(){}

}

CMSC 132 Summer 2017 30

class Child extends Base{
private int d;
public void m1(){}
public void m3(){}

}

Pointer to m1()
Pointer to m2()

VTABLE
Pointer to
vtable
a
b
c

Pointer to m1()
Pointer to m2()

VTABLE

Pointer to m3()

Pointer to
vtable
a
b
c
d

Base object

Child object

Memory Layout
class Base{
private int a;
protected int b;
protected int c;
protected void m1(){}
public void m2(){}

}

CMSC 132 Summer 2017 31

class Child extends Base{
private int d;
public void m1(){}
public void m3(){}

}

Pointer to m1()
Pointer to m2()

VTABLE
Pointer to
vtable
a
b
c

Pointer to m1()
Pointer to m2()

VTABLE

Pointer to m3()

Pointer to
vtable
a
b
c
d

Base object

Child object

Each class has one vtable.

All objects of the this class shares the vtable.

