
CMSC 132: Object-Oriented
Programming II

Interface

1

2

Java Interfaces

• A Java Interface is a formal way for a class to promise to implement
certain methods. We say that a class implements an interface if it
provides these methods

• Interface:
• Is defined by the keyword interface (rather than class)
• It defines methods (as many as you like), but does not give method

bodies (the executable statements that make up the method)
• All abstract, default, and static methods in an interface are implicitly

public, so you can omit the public modifier.
• Notice that an interface is not a class. You cannot create an

instance of an interface.

3

Defining an Interface

• Defining a Java Interface:

public interface Set<E> {
public void insert(E e);
public void clear();
public boolean contains(E o);
public boolean isEmpty();
public boolean remove(E o);
public int size();

}

4

Implementing an Interface

• A class is said to “implement” an interface if it provides
definitions for these methods

• Now, we may use a BagSet any place that an object of
type Set is expected

• A class implementing an interface can implement
additional methods

• A class can implement several interfaces

public class BagSet<E> implements Set<E>{
…
}

5

Motivation for Interfaces
• Two Opposing Goals, which Java programmers must deal with:

Strong typing and General-Purpose Functions
• Strong Typing: In strongly typed languages, like Java, the type of every

variable must be specified. This makes debugging much easier
• General-Purpose Functions: We would like to write methods that can be

applied to many different types. For example, methods for sorting that can
work with ints, doubles, Strings, etc. Advantages:
• Less Coding
• Less likely to have typos
• Easier maintenance of code

• The Problem: Strong typing implies that, for example, to write a sorting
function, we need to specify the types of the parameters (int, double, String,
etc.). This makes it impossible to write a generic sorting function. It would
seem that we need to implement many sorting functions (sortInts(),
sortDoubles(), sortStrings(), sortDates(), sortRationals(), …)

• The Solution: How can we solve the problem? By using Interfaces!

6

Java Interfaces
• How it works: Suppose you want to write a sorting method for objects

of some class X. Sorting requires that you be able to compare the
relative values of objects (<, >, <=, >=, ==)
• You implement a general-purpose sorting method using a

comparison method (e.g., compareTo())
• The user of your sorting function defines this comparison

method (compareTo()) for objects of class X.
• Now it is possible to invoke your general sorting method on

objects of class X
• To make this work: Java needs to provide some mechanism for

general-purpose functions (like sort) to specify what behavior they
require from specific classes (like X). This is the purpose of a Java
interface.

Comparable Interfaces

7

• The Comparable interface specifies a method called compareTo that
takes an object as a parameter and returns a negative integer, zero, or a
positive integer as the current object is less than, equal to, or greater than
the specified object

• Have we seen classes implementing this interface? Yes!
• String
• Integer
• Double
• All primitive wrapper classes implement Comparable

• By using interfaces a function like Collections.sort() can sort an ArrayList
of objects that implement the Comparable interface. For example, an
ArrayList of Integers, of Strings, etc.

• Can Collections.sort() sort an ArrayList of your own objects (e.g., ArrayList
of Cars?) Yes! Just make the Car class implement the Comparable
interface

Multiple Inheritance
• There are many situations where a simple class hierarchy is not adequate

to describe a class’ structure
• Example: Suppose that we have our class hierarchy of university people

and we also develop a class hierarchy of athletic people:

• StudentAthlete: Suppose we want to create an object that inherits all the
elements of a Student (admission year, GPA) as well as all the elements of
an Athlete (sport, amateur-status)

8

AthleticPerson

AthleticDirectorCoachAthlete

HeadCoach AssistantCoach

Person

Student Faculty

StudentAthlete

Multiple Inheritance
• Can we define a StudentAthlete by inheriting all the elements from both

Student and Athlete?
public class StudentAthlete extends Student, extends Athlete { … }

• Alas, no. At least not in Java
• Multiple Inheritance:

• Building a class by extending multiple base classes is called multiple
inheritance

• It is a very powerful programming construct, but it has many subtleties and
pitfalls. (E.g., If Athlete and Student both have a name instance variable
and a toString() method, which one do we inherit?)

• Java does not support multiple inheritance. (Although C++ does.)
• In Java a class can be extended from only one base class
• However, a class can implement any number of interfaces.

9

Nice try! But not allowed in Java

Multiple Inheritance with Interfaces
• Java lacks multiple inheritance, but there is an alternative

What public methods do we require of an Athlete object?
• String getSport(): Return the athlete’s sport
• boolean isAmateur(): Does this athlete have amateur status?

• We can define an interface Athlete that contains these methods:
public interface Athlete {

public String getSport();
public boolean isAmateur();

}
• Now, we can define a StudentAthlete that extends Student and

implements Athlete

10

Multiple Inheritance with Interfaces

• StudentAthlete extends Student and implements Athlete:
public class StudentAthlete extends Student implements Athlete

{
private String mySport;
private boolean amateur;
// … other things omitted
public String getSport() { return mySport; }
public boolean isAmateur() { return amateur; }

}
• StudentAthlete can be used:

• Anywhere that a Student object is expected (because it is derived
from Student)

• Anywhere that an Athlete object is expected (because it implements
the public interface of Athlete)

• So, we have effectively achieved some of the goals of multiple
inheritance, by using Java’ single inheritance mechanism

11

Common Uses of Interfaces

• Interfaces are flexible things and can be used for many purposes in
Java:
• A work-around for Java’s lack of multiple inheritance.

(We have just seen this.)
• Specifying minimal functional requirements for classes (This is

its principal purpose.)
• For defining groups of related symbolic constants.

(This is a somewhat unexpected use, but is not uncommon.)

12

Using Interfaces for Symbolic Constants

• In addition to containing method declarations, interfaces can contain
constants, that is, variables that are public final static.

13

interface OlympicMedal {
static final String GOLD = "Gold";
static final String SILVER = "Silver";
static final String BRONZE = "Bronze";

}

• Considered bad practice.

Default Methods

• Java 8 introduces “Default Method”, a new feature
• Add new methods to the interfaces without breaking the

existing implementation of these interface.

14

public interface A {
public void m1();
default public void m2 {

println("default m2”;
}

}
public class B implements A {
public void m1() {…}

}
B b = new B();
b.m2(); // print “default m2”

Abstract classes versus interfaces
• After introducing Default Method, it seems

that interfaces and abstract classes are same.
• However, they are still different concept in Java 8.
• Abstract class can define constructor. They can have a

state associated with them.
• default method can be implemented only in the terms of

invoking other interface methods, with no reference to a
particular implementation's state.

• Both use for different purposes and choosing between
two really depends on the scenario context.

15

Multiple Inheritance Ambiguity Problems

Since java class can implement multiple interfaces and
each interface can define default method with same method signature,
therefore, the inherited methods can conflict with each other.

16

public interface A {
default int m1(){
return 1;

}
}
public interface B {
default int m1(){
Return 2;

}
}
public class C implements A, B
{
}

A:m1 B:m1

C:m1

This code will fail to
compile

Interface Hierarchies

• Inheritance applies to interfaces, just as it does to classes. When an
interface is extended, it inherits all the previous methods

17

Quiz 1: True /False

An interface can contain following type of
members:
• public, static, final fields (i.e., constants)
• default and static methods with bodies

18

A. True
B. False

Quiz 1: True /False

An interface can contain following type of
members:
• public, static, final fields (i.e., constants)
• default and static methods with bodies

19

A. True
B. False

Quiz 2: True /False

A class can implement multiple interfaces and
many classes can implement the same interface.

20

A. True
B. False

Quiz 2: True /False

A class can implement multiple interfaces and
many classes can implement the same interface.

21

A. True
B. False

Quiz 3: What is the output?
abstract class Demo{
public int a;
public Demo(){ a = 10; }
abstract public void set();
abstract final public void get();

}
class Test extends Demo{
public void set(int a){this.a = a;}
final public void get(){

System.out.println("a = " + a);
}
public static void main(String[] args){
Test obj = new Test();
obj.set(20);
obj.get(); }

}
22

A. a = 10
B. a = 20
C. Compile error

Quiz 3: What is the output?
abstract class Demo{
public int a;
public Demo(){ a = 10; }
abstract public void set();
abstract final public void get();

}
class Test extends Demo{
public void set(int a){this.a = a;}
final public void get(){

System.out.println("a = " + a);
}
public static void main(String[] args){
Test obj = new Test();
obj.set(20);
obj.get(); }

}
23

A. a = 10
B. a = 20
C. Compile error

Final method can’t be
overridden. Thus, an
abstract function can’t be
final.

Quiz 4:

24

A. No. Only classes can be extended.
B. No. Interfaces can not be part of a hierarchy.
C. Yes. Since all interfaces automatically extend Object.
D. Yes.

Can an interface extend another interface?

Quiz 4:

25

A. No. Only classes can be extended.
B. No. Interfaces can not be part of a hierarchy.
C. Yes. Since all interfaces automatically extend Object.
D. Yes.

Can an interface extend another interface?

Quiz 5:

26

A. No. Then the interface could never be used.
B. No. Since only private classes could use the interface.
C. Yes. This would make all of its methods and constants

private.
D. Yes. This would mean that only classes in the same file

could use the interface.

Can an interface be given the private access modifier?

Quiz 5:

27

A. No. Then the interface could never be used.
B. No. Since only private classes could use the interface.
C. Yes. This would make all of its methods and constants

private.
D. Yes. This would mean that only classes in the same file

could use the interface.

Can an interface be given the private access modifier?

