Trees

University

Engineering

Education

Sciences

Physics

Computer Science
Trees
Trees

- A tree is a node with a value and zero or more children.
- No Cycle

Properties
- Number of nodes
- Height
- Root Node
- Leaves
- Interior nodes
- Ancestor
- Descendant
- Siblings
- Subtrees
Binary Tree

- Each internal node has at most two children (degree of two)
- The children of a node are an ordered pair
- We call the children of an internal node left child and right child
- Applications:
 - arithmetic expressions
 - decision processes
 - searching
A full binary tree is a tree in which every node other than the leaves has two children.

A full (perfect) binary tree of a given height k has $2^{k+1} - 1$ nodes.
Complete Binary Trees

A complete binary tree is a binary tree in which every level, except possibly the last, is completely filled, and all nodes are as far left as possible.

Complete binary tree

Full binary tree
Binary Tree Traversal

preOrder:

inOrder:

postOrder:

Level Order:
Binary Tree Traversal

preOrder: root, left, right
A B D G H C E F I J

inOrder: left, root, right
B G D H A E C I F J

postOrder: left, right, root
G H D B E I J F C A

Level Order: BFS
Quiz 1:

What is the preOrder traversal of this binary tree?

A. 5 2 8 0 1 3
B. 5 2 1 0 3 8
C. 5 2 0 1 8 3
D. 5 2 0 1 3 8
Quiz 1:

What is the preOrder traversal of this binary tree?

A. 5 2 8 0 1 3
B. 5 2 1 0 3 8
C. 5 2 0 1 8 3
D. 5 2 0 1 3 8
Quiz 2:

What is the inOrder traversal of this binary tree?

A. 0 1 2 3 8 5
B. 0 2 1 5 8 3
C. 0 2 1 5 3 8
D. 5 2 0 1 3 8
Quiz 2:

What is the inOrder traversal of this binary tree?

A. 0 1 2 3 8 5
B. 0 2 1 5 8 3
C. 0 2 1 5 3 8
D. 5 2 0 1 3 8
Quiz 3:

What is the postOrder traversal of this binary tree?

A. 0 1 2 3 8 5
B. 0 2 1 5 8 3
C. 0 1 2 5 3 8
D. 5 2 0 1 3 8
Quiz 3:

What is the postOrder traversal of this binary tree?

A. 0 1 2 3 8 5
B. 0 2 1 5 8 3
C. 0 1 2 5 3 8
D. 5 2 0 1 3 8
Binary Tree Traversal

preOrder: 5 2 0 1 8 3

inOrder: 0 2 1 5 8 3

postOrder: 0 1 2 3 8 5

Level Order: 5 2 8 0 1 3
Arithmetic Expression Trees

Arithmetic Expression:

$$A + (B \times (C \div D))$$

Tree for the above expression:

- Used in most compilers
- No parenthesis need to evaluate
- Calculate by traversing tree
Traversing Trees

- **Preorder:** Root, then Children
 - $+ A \times B / C D$
- **Postorder:** Children, then Root
 - $A B C D / * +$
- **Inorder:** Left child, Root, Right child
 - $A + B \times C / D$
Build a Binary Tree

Build a Binary Tree from given inOrder, postOrder

inOrder: 9,5,1,7,2,12,8,4,3,11
postOrder: 9,1,2,12,7,5,3,11,4,8 — root

```
8

9, 5, 1, 7, 2, 12

4, 3, 11
```
Build a Binary Tree

Build a Binary Tree from given inOrder, postOrder

inOrder: 9,5,1,7,2,12,8,4,3,11
postOrder: 9,1,2,12,7,5,3,11,4,8

PreOrder - 8, 5, 9, 7, 1, 12, 2, 4, 11, 3
InOrder - 9, 5, 1, 7, 2, 12, 8, 4, 3, 11
PostOrder - 9, 1, 2, 12, 7, 5, 3, 11, 4, 8
LevelOrder - 8, 5, 4, 9, 7, 11, 1, 12, 3, 2
Build a Binary

Build Binary Tree from \textit{inOrder, preOrder}

Inorder : DBHEIAFCG
Preorder : ABDEHICFG
Build a Binary

Build Binary Tree from **inOrder**, **preOrder**

Inorder: DBHEIACFG
Preorder: ABDEHICFG

Inorder: DBHEIACFG
Preorder: ABDEHICFG
Postorder: DHIEBFGCA
Binary Tree Implementation

Height:
Size:
Diameter:
Mirror:
Path:
Least Common Ancestor (LCA):
class Node {
 private E key;
 private Node left, right;
 Node(E key) {
 this.key = key;
 }
}
public class BinaryTree<E> {
 private Node root;
 class Node {
 private E key;
 private Node left, right;
 Node(E key) {
 this.key = key;
 }
 }
}
Binary Tree Implementation

Check out the Binary Tree code examples from github