CMSC 132: Object-Oriented
Programming Il

2-3-4 Tree

CMSC 132 Summer 2017

2-3-4 Tree

» Self-balancing tree
» every internal node has either two, three, or four child nodes.
* a 2-node has one data element, and if internal has two

child nodes;
* a 3-node has two data elements, and if internal has three
child nodes;
* a4-node has three data elements, and if internal has four
child nodes.
| ol o]

2-node 3-node 4-node

2-3-4 Tree Properties

» Every node (leaf or internal) is a 2-node, 3-node or
a 4-node, and holds one, two, or three data
elements, respectively.

» All leaves are at the same depth (the bottom level).
» All data is kept in sorted order. e
N T

» Tree height. N KA N
Pa RS SRS L ST WA EASTS
* Worst case: Ig N [all 2-nodes]
* Bestcase:logd N=1/2Ig N [all 4-nodes]
* Between 10 and 20 for 1 million nodes.
* Between 15 and 30 for 1 billion nodes.

» Guaranteed logarithmic performance for both
search and insert.

2-3-4 Tree Insertion

1. If the current node is a 4-node:
* Remove and save the middle value to get a 3-node.

* Split the remaining 3-node up into a pair of 2-nodes (the now
missing middle value is handled in the next step).

* If this is the root node (which thus has no parent):

. the middle value becomes the new root 2-node and the tree
height increases by 1. Ascend into the root.

* Otherwise, push the middle value up into the parent node.
Ascend into the parent node.

2. Find the child whose interval contains the value to be inserted.
3. If that child is a leaf, insert the value into the child node and finish.
* Otherwise, descend into the child and repeat from step 1

2-3-4 Tree Example: Insertion

12

25

14
28
17

52
16
48
68

26
29
53
55
45

2-3-4 Tree Example

12

25

14
28
17

52
16
48
68

26
29
53
55
45

12

2-3-4 Tree Example

1
12

8

2
25
6
. Insert 2
28
17

7 111 81|12
52
16
48
68

3
26
29
53
55
45

2-3-4 Tree Example

12

25

14
28
17

52
16
48
68

26
29
53
55
45

12

Insert 2

12

2-3-4 Tree Example

12

25

14
28
17

52
16
48
68

26
29
53
55
45

12

Insert 25

2-3-4 Tree Example

12

25

14
28
17

52
16
48
68

26
29
53
55
45

12

Insert 25

12

25

2-3-4 Tree Example

12

25

14
28
17

52
16
48
68

26
29
53
55
45

12

25

Insert 6

2-3-4 Tree Example

12

25

14
28
17

52
16
48
68

26
29
53
55
45

25

Insert 6

12

25

12

25

14
28
17

52
16
48
68

26
29
53
55
45

2-3-4 Tree Example

25

Insert 14

12

25

14
28
17

52
16
48
68

26
29
53
55
45

2-3-4 Tree Example

25

Insert 14

12

14

25

2-3-4 Tree Example

12

25

14
28
17

52
16
48
68

26
29
53
55
45

Insert 28

12

14

25

12

25

14
28
17

52
16
48
68

26
29
53
55
45

2-3-4 Tree Example

Insert 28

12] 6 12| 14

25

14

12

25

28

12

25

14
28
17

52
16
48
68

26
29
53
55
45

2-3-4 Tree Example

25

Insert 17

2-3-4 Tree Example

12

25

14
28
17

52
16
48
68

26
29
53
55
45

14

12

8(14
1]2]6] [12] |25
Insert 7

17

25

28

12

25

14
28
17

52
16
48
68

26
29
53
55
45

2-3-4 Tree Example

17|25

28

Insert 7

12

25

14
28
17

52
16
48
68

26
29
53
55
45

2-3-4 Tree Example

17|25

28

12

Insert 7

17125

28

12

25

14
28
17

52
16
48
68

26
29
53
55
45

2-3-4 Tree Example

e

2

14

/

\

/

12

1725

28

Insert 52

12

25

14
28
17

52
16
48
68

26
29
53
55
45

2-3-4 Tree Example

21 81[14
_— AN
1 6171 [12 17125/28
Insert 52
2(8|14 |25 |14 25
1] ([6l7]| [12| [17[28[52 1 12) |l17)| 128152

2-3-4 Tree Example

12

25 T

14

28 —i—
17! |11 6| 7] (|72 |[77]] || 28|| 52

52
16
48
68

26
29
2 Insert 16
55
45

2-3-4 Tree Example

12

25

14
28
17

52
16
48
68

26
29
53
55
45

14

25

17

28

52

Insert 16

14

25

12

16

17

28

52

2-3-4 Tree Example

12

25

14
28
17

52
16
48
68

26
29
53
55
45

14

25

12

16

17

28

52

Insert 48

12

25

14
28
17

52
16
48
68

26
29
53
55
45

2-3-4 Tree Example

14] [25
1] [Tell7]] [2]] [[76] [77]] [[28lls2
Insert 48

14

25

12

16

17

28

48

52

12

25

14
28
17

52
16
48
68

26
29
53
55
45

2-3-4 Tree Example

14

25

12

16

17

28

48

52

Insert 68

2-3-4 Tree Example

12

25

14
28
17

52
16
48
68

3
26
29
53
55
45

14

25

12

16

17

28

48

52

Insert 68

14

25

48

12

16

17

28

52

68

2-3-4 Tree Example

12

25

14
28
17

52
16
48
68

3
26
29
53
55
45

25

48

AN

16

17

Insert 3, 26

52

68

12

25

14
28
17

52
16
48
68

26
29
53
55
45

2-3-4 Tree Example

14

25

48

NN

16

17

nsert 3, 26

28

52

68

14

25

48

12

N\ S0

16

17

26

28

52

68

2-3-4 Tree Example

12

25

14
28
17

52
16
48
68

26
29
53
55
45

14

12

25| |48
1611 17 26

28

29

52

53

68

Insert 55

2-3-4 Tree Example

12

25

14
28
17

52
16
48
68

26
29
53
55
45

ol

NN

28| 29

Insert 55

53|68

48|53
O H EEE

2-3-4 Tree Example

12

25

14
28
17

52
16
48
68

26
29
53
55
45

14

48

53

16

17

26

28

29

52

55

68

Insert 45

2-3-4 Tree Example

12

25

14
28
17

52
16
48
68

26
29
53
55
45

Insert 45

25

16

17

26

28

29

25

14

\

12

16

17

N

28

48

53

26

29

45

55

68

52

55

68

2-3-4 Tree: Delete

e Leaf:

» Just delete the key

« Make sure that a leaf is not empty after

deleting a key

/

1,2

3,0

l

4

Delete 2

3,0

2-3-4 Tree: Delete

* Leaf:
* When key deletion would create an empty leaf, borrow
a key from leaf 's immediate siblings (i.e. to the left and
then right).

delete 4:
3.5 rotate 2.5

] =]

1,2| [4] [6 1| [3X4] |6

2-3-4 Tree: Delete

o Leaf:
« If siblings are 2-nodes (no immediate sibling from
which to borrow a key), steal a key from our parent by
doing the opposite of a split.

3,0 3

merge
/] =
L2 (4] |6 1.2 14,58

Delete 6

2-3-4 Tree: Delete

* What if parent is a 2-node (one key)?

delete 7:

-~

2

merge

—

/

-~

2

oops!

5,6,%

2-3-4 Tree: Delete

« What if parent is a 2-node (one key)?
« Steal from siblings (parent’s)

* Merge

delete 7:

/

2

merge

2.4

5,6,%

2-3-4 Tree: Delete

« What if parent is a 2-node (one key)?
« Steal from siblings (parent’s)

* Merge

delete 9:

2.4

N\

/

rotate

1|3

5

7,8,9

2-3-4 Tree: Delete

* Internal Node:
* Delete the predecessor, and swap it with
the node to be deleted.

3,9 rotate 2,9 replace
/] — i —>
1,246 1113416 1

Delete 5: first delete 4, then swap 4 for 5.

2-3-4 Tree: Delete

* Internal Node:
* Delete the predecessor, and swap it with the node to

be deleted.
* Key to delete may move.

2.4 merge 1 replace 4
/] — —
1113115 1,2,3| |9 1.3 |5

Delete 2: first delete 1, then swap 1 for 2.

2-3-4 Tree Example: Delete

a

28 || 48| 53
“ 1 N 6| 7 12 16 X{ 26 29 || 45 52
| I

Delete 3,17,55

2-3-4 Tree Example: Delete

8

25

4

14

16

S

28

48

53

4

26

29

45

N

52

68

Delete 1: borrow from siblings (rotate)

2-3-4 Tree Example: Delete

a

28 || 4
26 29

Delete 1

2-3-4 Tree Example: Delete

/

8

25

14

\

16

N

28

48

53

4

AN

26

29

45

52

68

Delete 52: borrow from sibling

2-3-4 Tree Example: Delete

8

25

/

14

16

N

28

45

53

4

26

29

A

48

68

Delete 52: borrow from sibling

2-3-4 Tree Example: Delete

8

25

4

14

16

Delete 48: borrow from parent

S

28

45

53

4

26

29

~N

48

68

2-3-4 Tree Example: Delete

8

25

/

14

16

N

28

53

/

26

29

45

68

Delete 48: borrow from parent

2-3-4 Tree Example: Delete

8 || 25

N
Vau /

M 7 12 i 26 29[| 45
IS

Delete 2: borrow from parent, and parent

2-3-4 Tree Example: Delete

25

8 || 14 28| 53

VRN /

Delete 2: borrow from parent, and parent

2-3-4 Tree Example: Delete

25

: |14/ : :

RN /

Delete 14: delete 12, swap 12 for 14

2-3-4 Tree Example: Delete

25

VRN /

Delete 14: delete 12, swap 12 for 14

2-3-4 Tree Example: Delete

25

VAN /

Delete 25: delete 16, swap 16 for 25

2-3-4 Tree Example: Delete

16

/) /

6 8 |l 12 26 29 || 45

Delete 25: delete 16, swap 16 for 25

Represent 2-3-4 tree as a BST

» Use "internal” red edges for 3- and 4- nodes.
» Require that 3-nodes be left-leaning.

3-node

- f’

4-node

e re"rz

Represent 2-3-4 tree as a BST

» Elementary BST search works
» Easy-to-maintain 1-1 correspondence with 2-3-4 trees
» Trees therefore have perfect black-link balance

8/7-< 9 /{D IQ I'J

