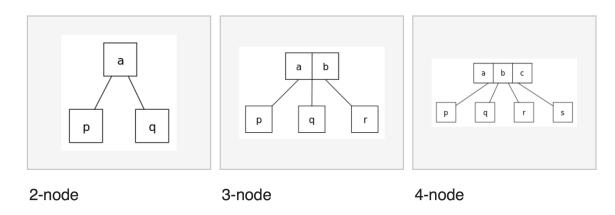
CMSC 132: Object-Oriented Programming II

2-3-4 Tree

2-3-4 Tree

- Self-balancing tree
- every internal node has either two, three, or four child nodes.
 - a 2-node has one data element, and if internal has two child nodes;
 - a 3-node has two data elements, and if internal has three child nodes;
 - a 4-node has three data elements, and if internal has four child nodes.



2-3-4 Tree Properties

- Every node (leaf or internal) is a 2-node, 3-node or a 4-node, and holds one, two, or three data elements, respectively.
- All leaves are at the same depth (the bottom level).
- All data is kept in sorted order.
- Tree height.
 - Worst case: Ig N [all 2-nodes]
 - Best case: log4 N = 1/2 lg N [all 4-nodes]
 - Between 10 and 20 for 1 million nodes.
 - Between 15 and 30 for 1 billion nodes.
- Guaranteed logarithmic performance for both search and insert.

2-3-4 Tree Insertion

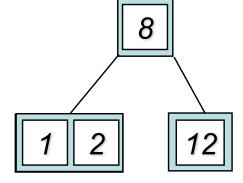
- 1. If the current node is a 4-node:
 - Remove and save the middle value to get a 3-node.
 - Split the remaining 3-node up into a pair of 2-nodes (the now missing middle value is handled in the next step).
 - If this is the root node (which thus has no parent):
 - the middle value becomes the new root 2-node and the tree height increases by 1. Ascend into the root.
 - Otherwise, push the middle value up into the parent node.
 Ascend into the parent node.
- 2. Find the child whose interval contains the value to be inserted.
- 3. If that child is a leaf, insert the value into the child node and finish.
 - Otherwise, descend into the child and repeat from step 1

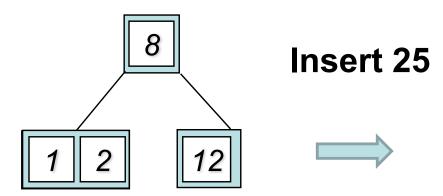
2-3-4 Tree Example: Insertion

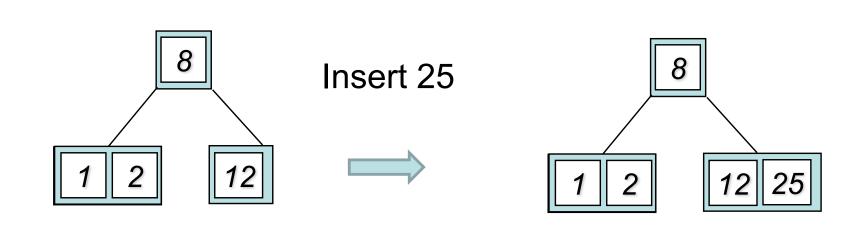
1 8 12

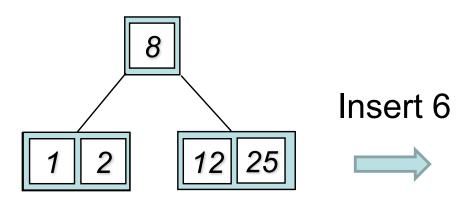
 Insert 2

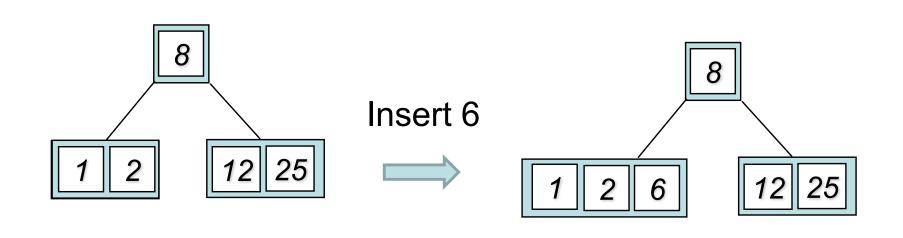
1 8 12

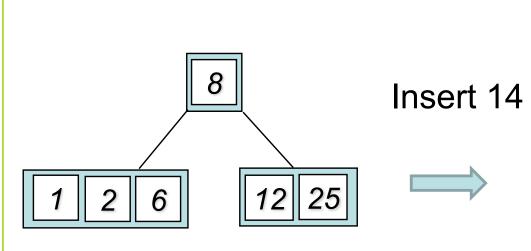


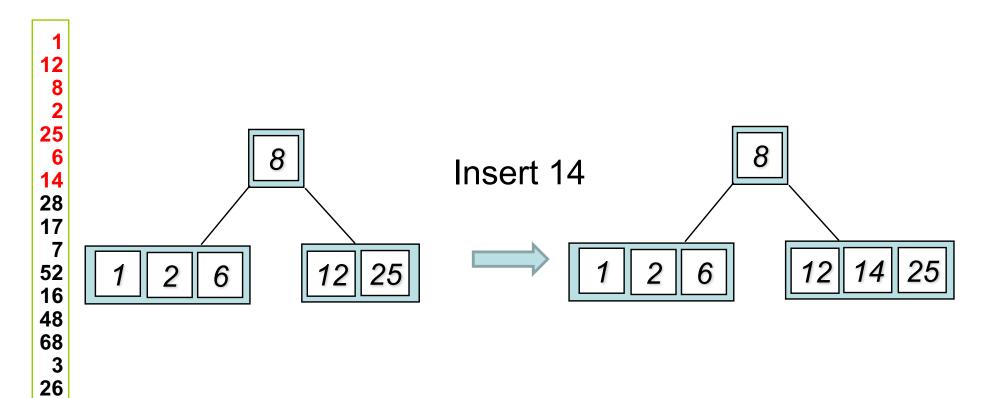


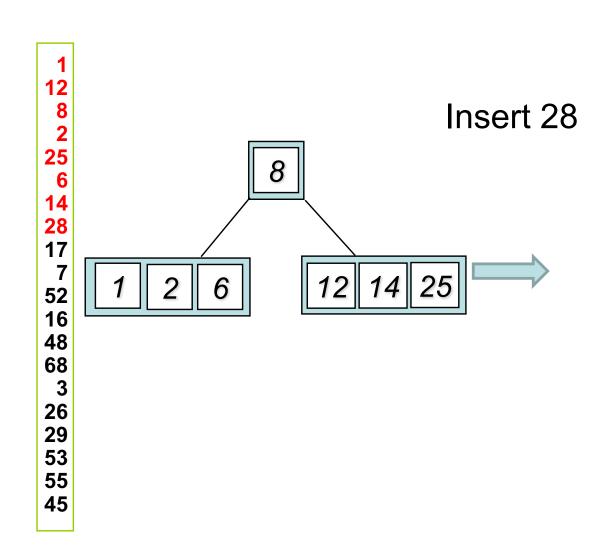


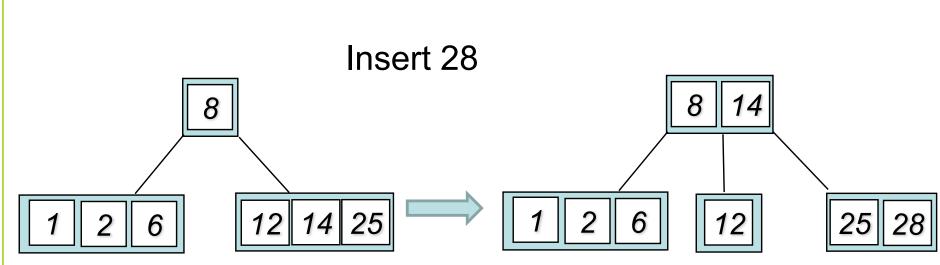


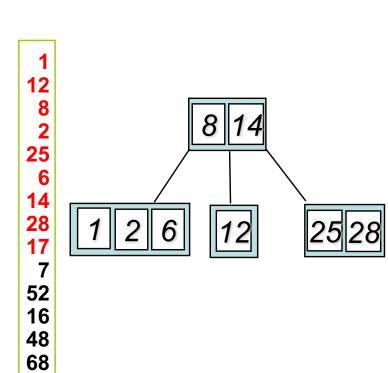




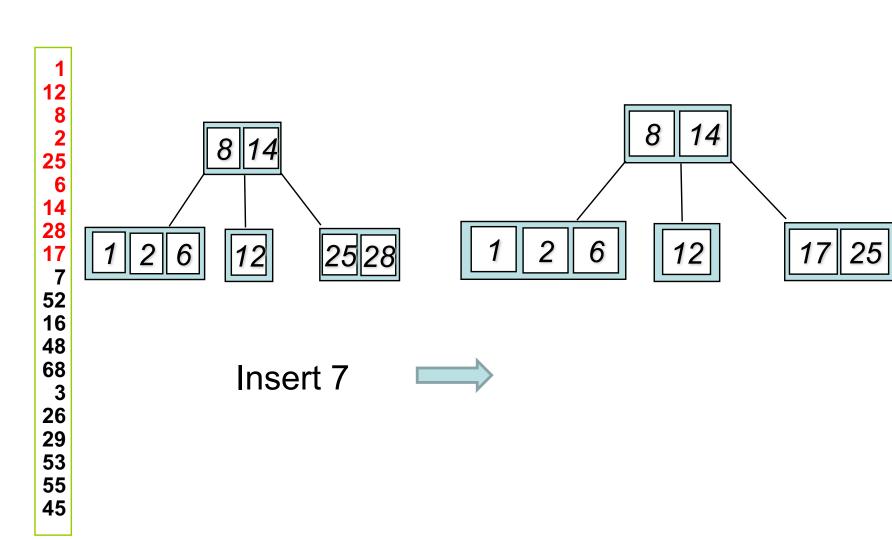


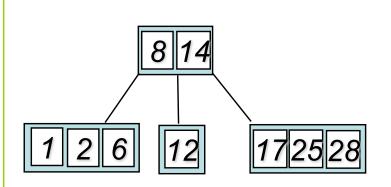




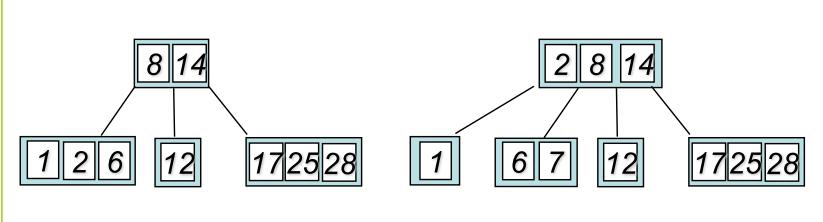


Insert 17

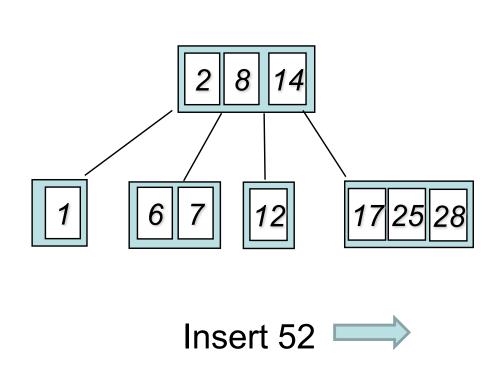


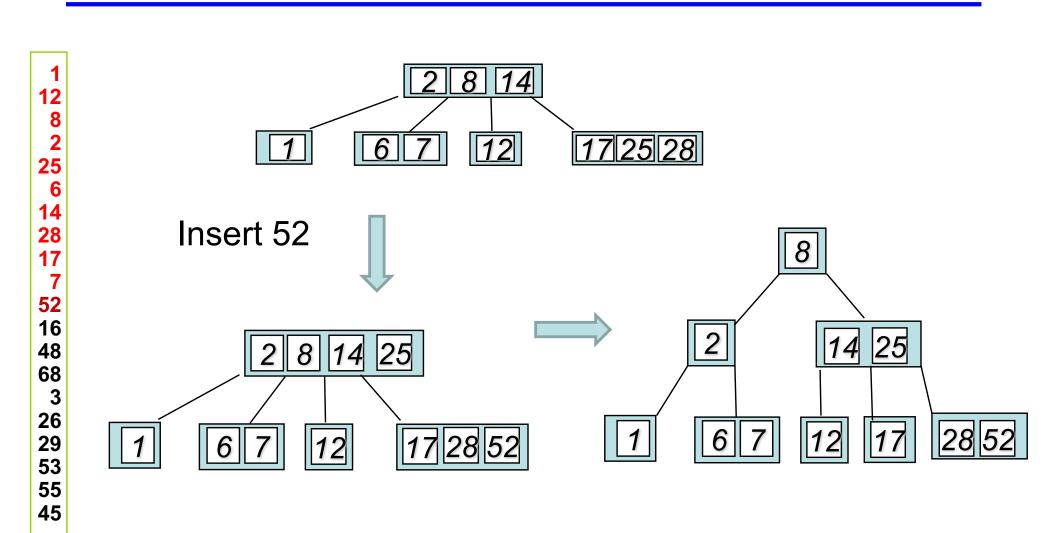


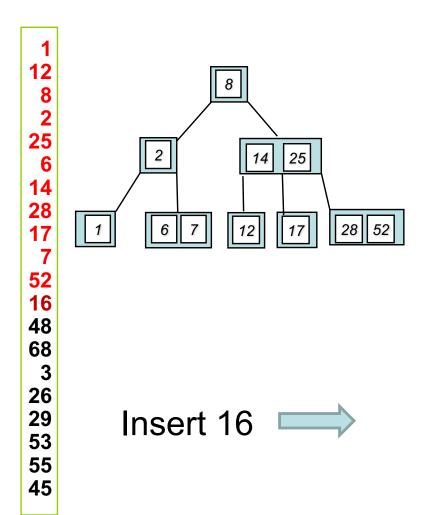
Insert 7

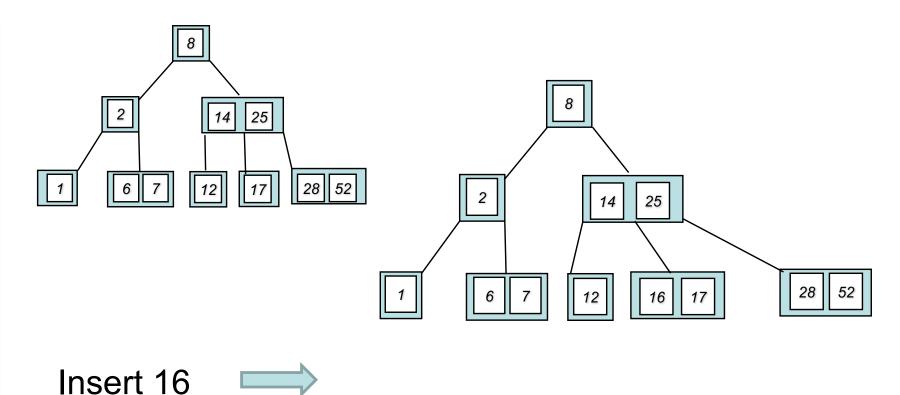


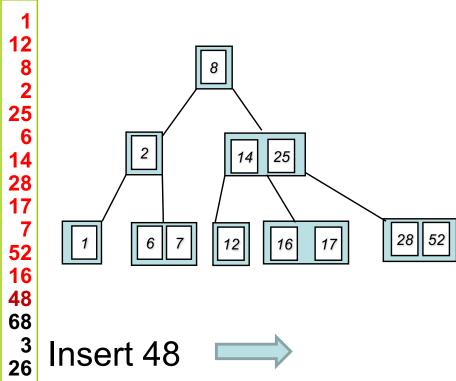
Insert 7

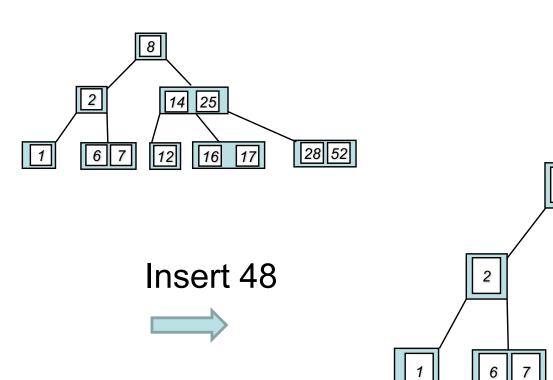


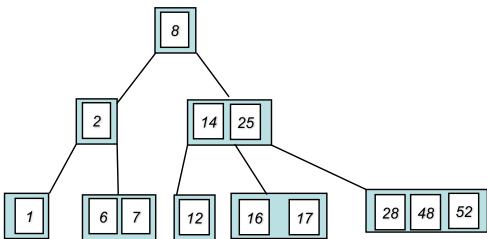


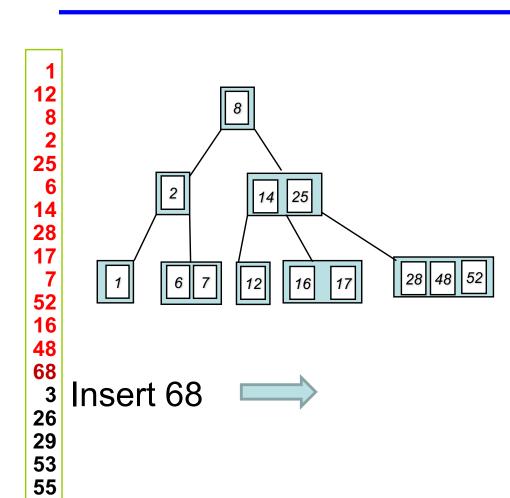


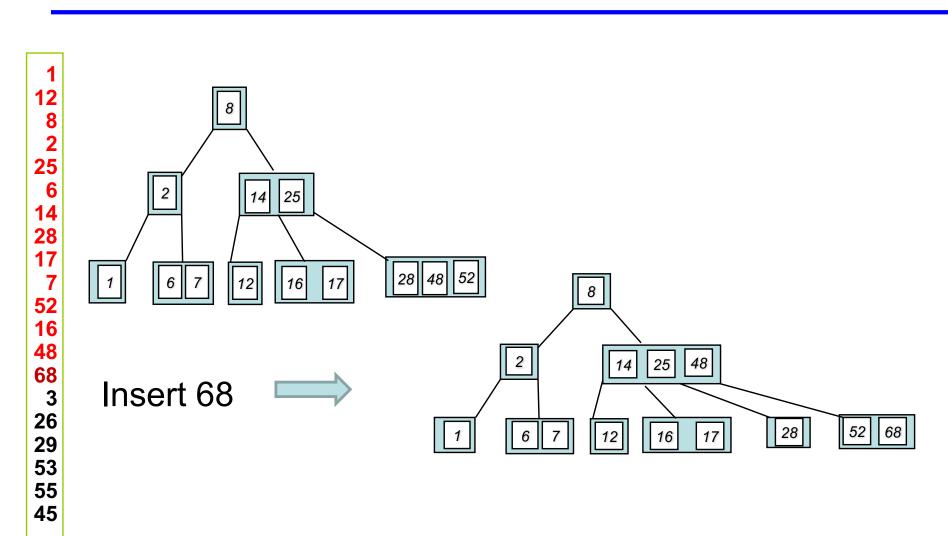


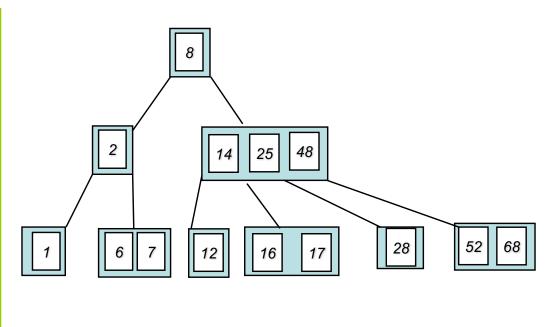




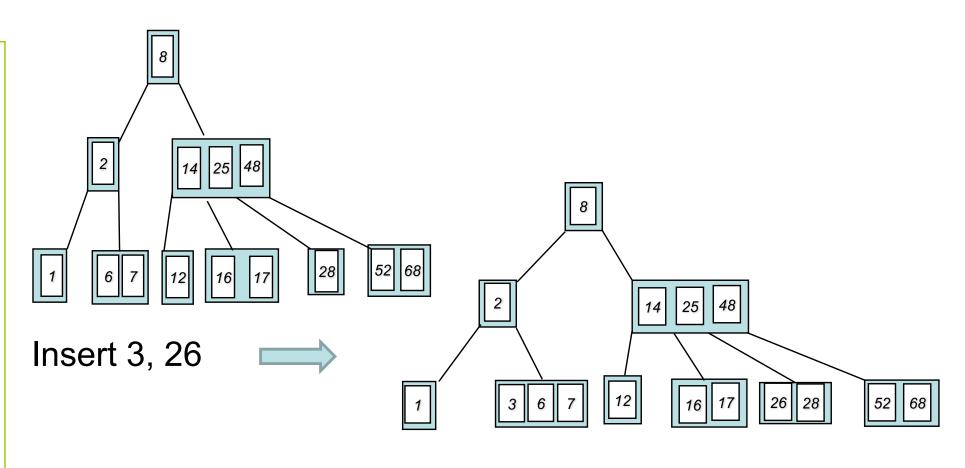


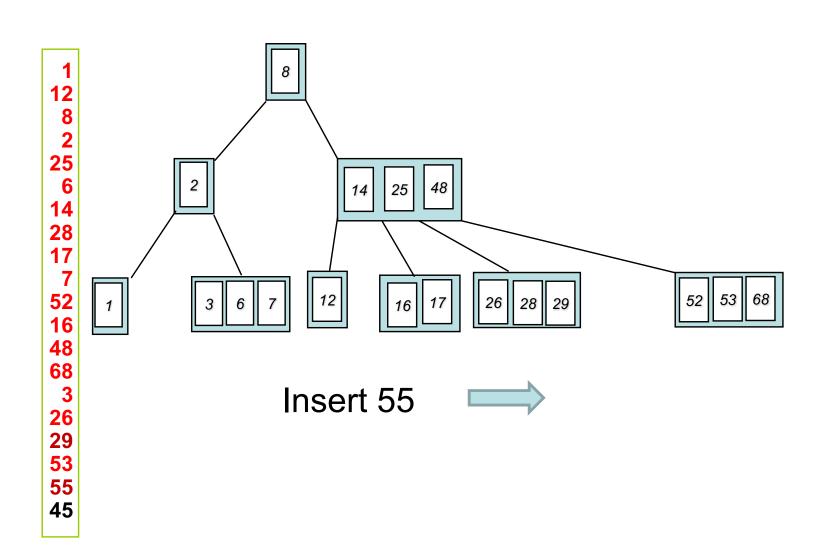


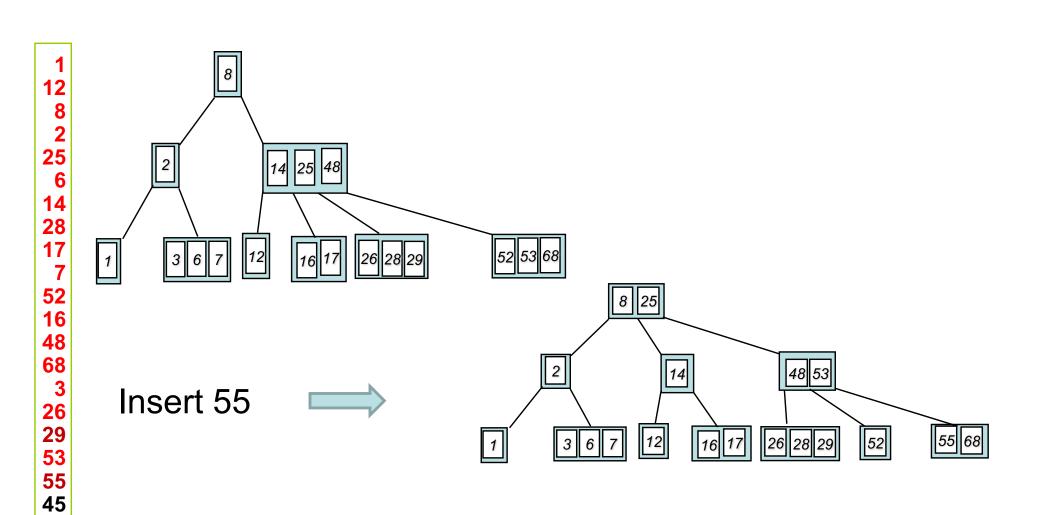


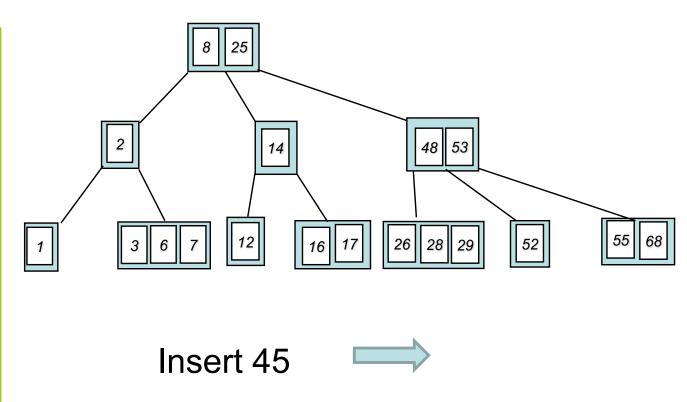


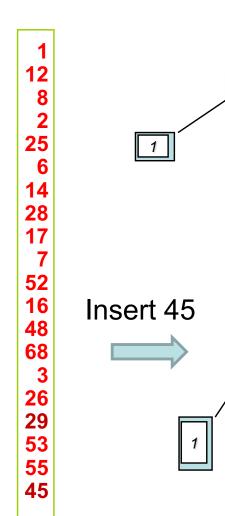
Insert 3, 26

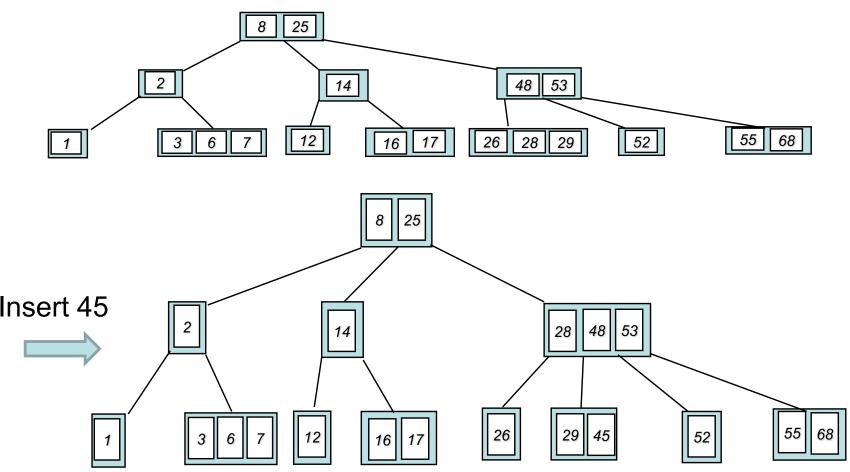






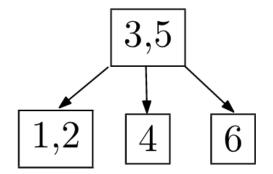


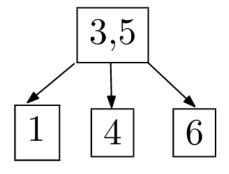




2-3-4 Tree: Delete

- Leaf:
 - Just delete the key
 - Make sure that a leaf is not empty after deleting a key

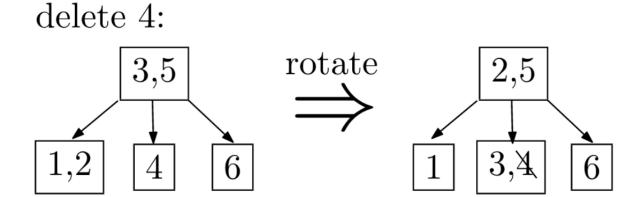




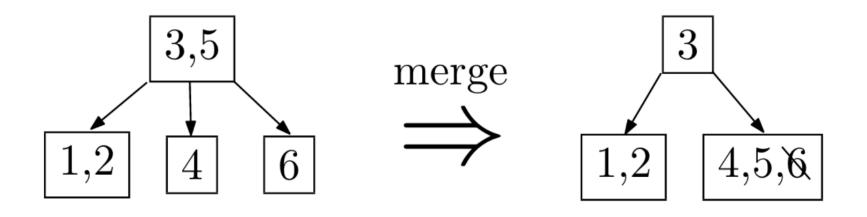
Delete 2

2-3-4 Tree: Delete

- Leaf:
 - When key deletion would create an empty leaf, borrow a key from leaf 's immediate siblings (i.e. to the left and then right).

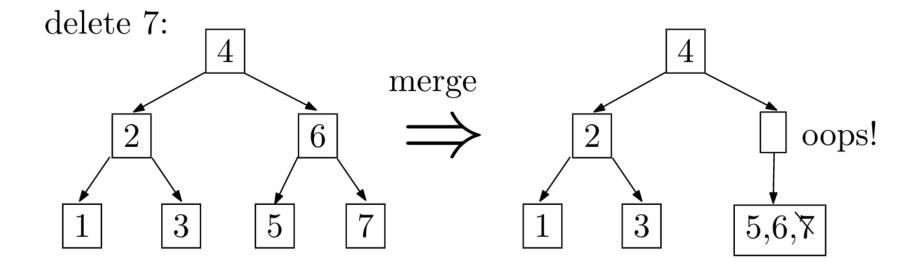


- Leaf:
 - If siblings are 2-nodes (no immediate sibling from which to borrow a key), steal a key from our parent by doing the opposite of a split.



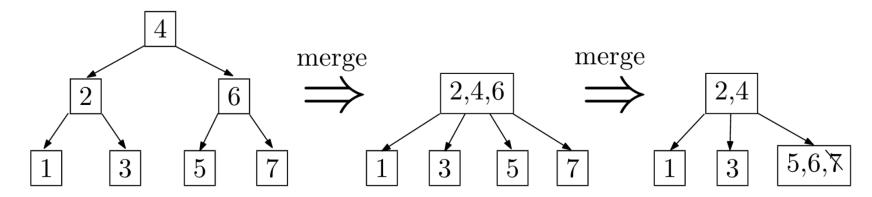
Delete 6

• What if parent is a 2-node (one key)?



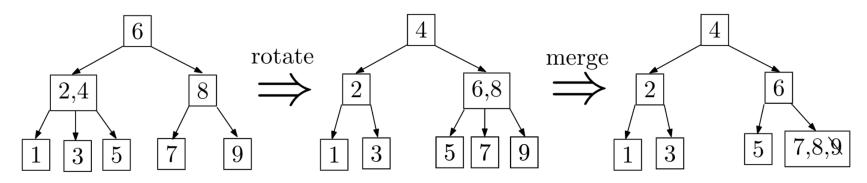
- What if parent is a 2-node (one key)?
 - Steal from siblings (parent's)
 - Merge

delete 7:

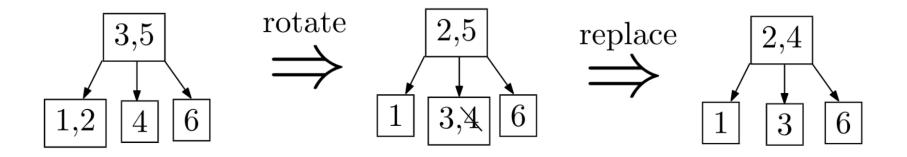


- What if parent is a 2-node (one key)?
 - Steal from siblings (parent's)
 - Merge

delete 9:

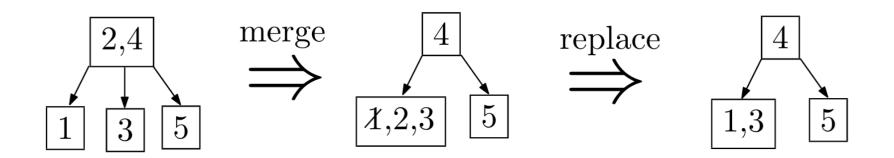


- Internal Node:
 - Delete the predecessor, and swap it with the node to be deleted.

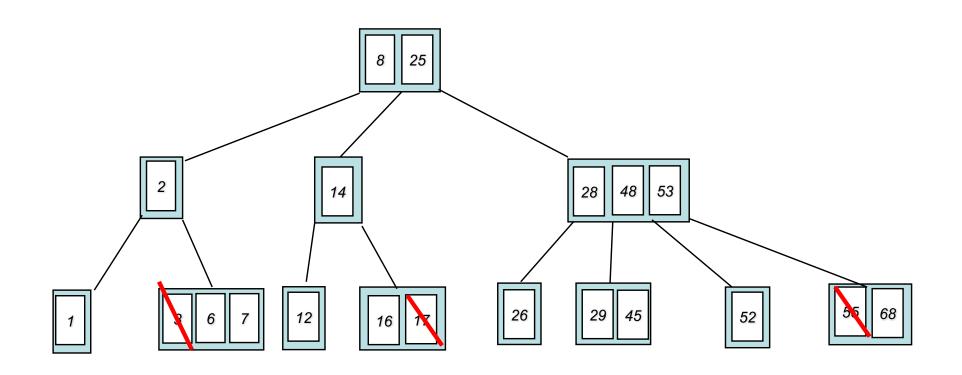


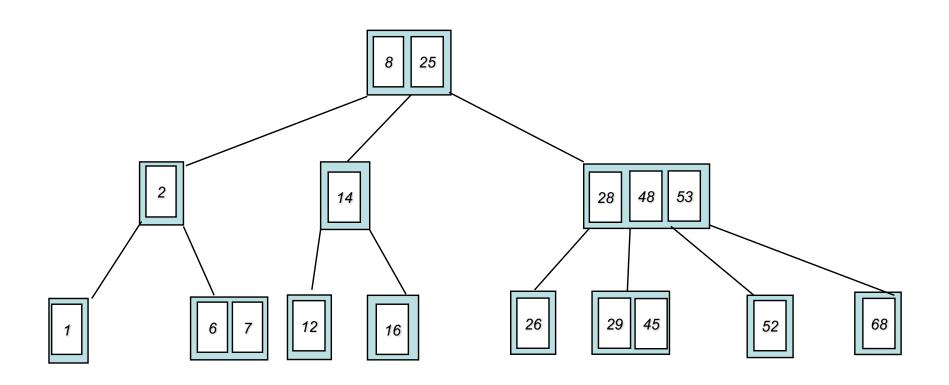
Delete 5: first delete 4, then swap 4 for 5.

- Internal Node:
 - Delete the predecessor, and swap it with the node to be deleted.
 - Key to delete may move.

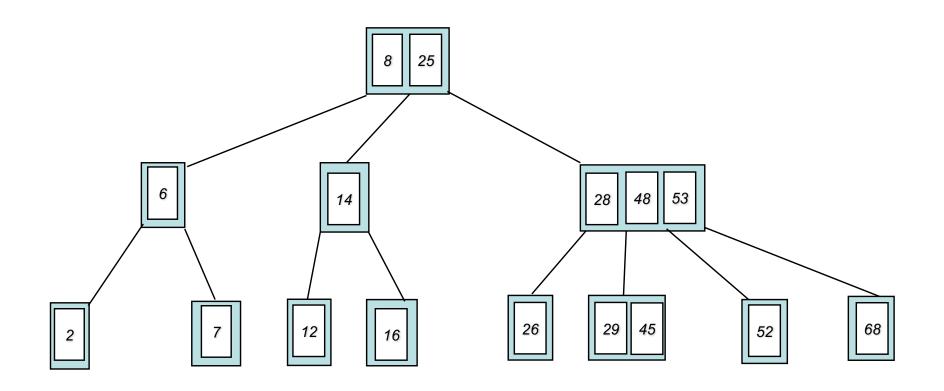


Delete 2: first delete 1, then swap 1 for 2.

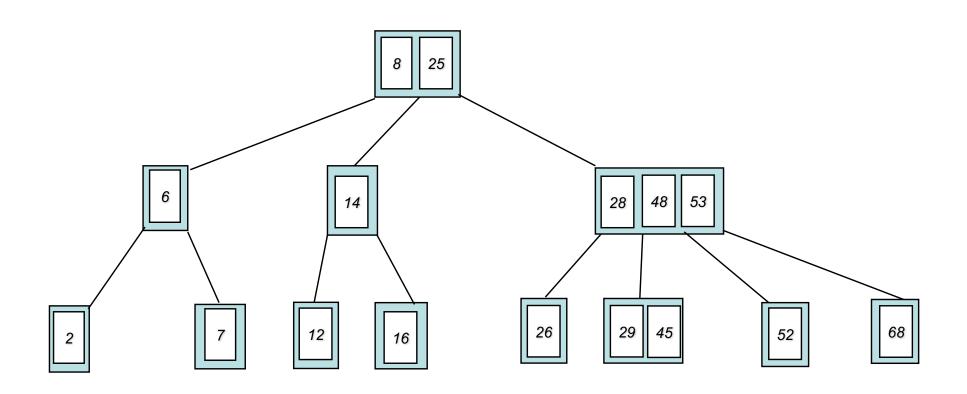




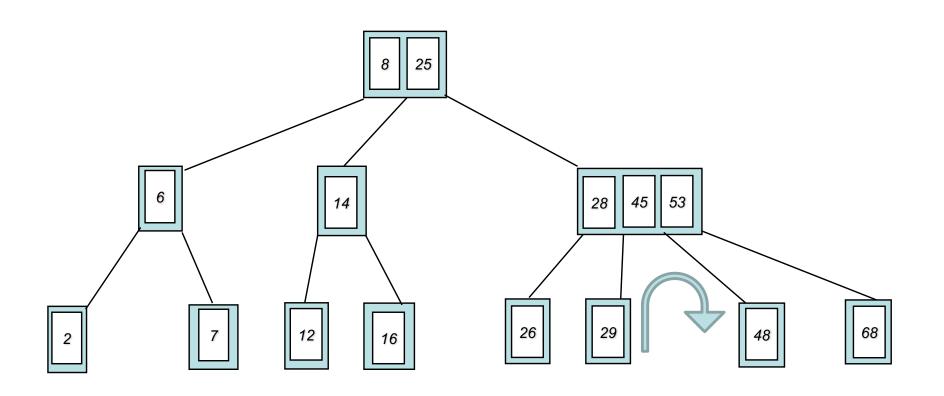
Delete 1: borrow from siblings (rotate)



Delete 1



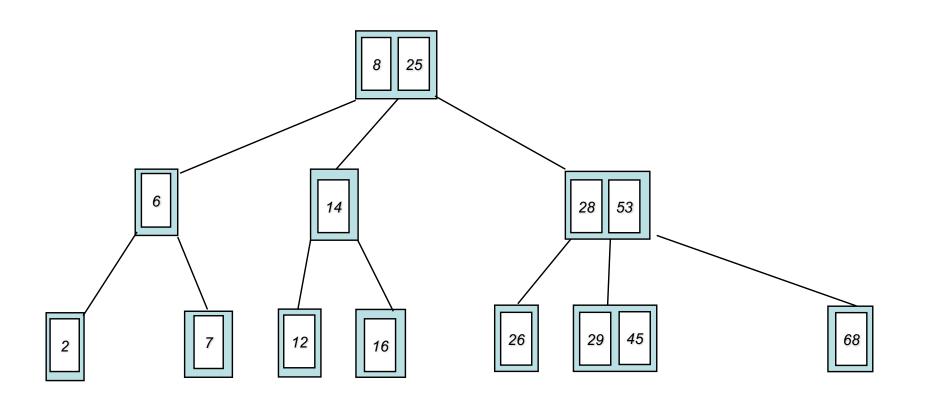
Delete 52: borrow from sibling



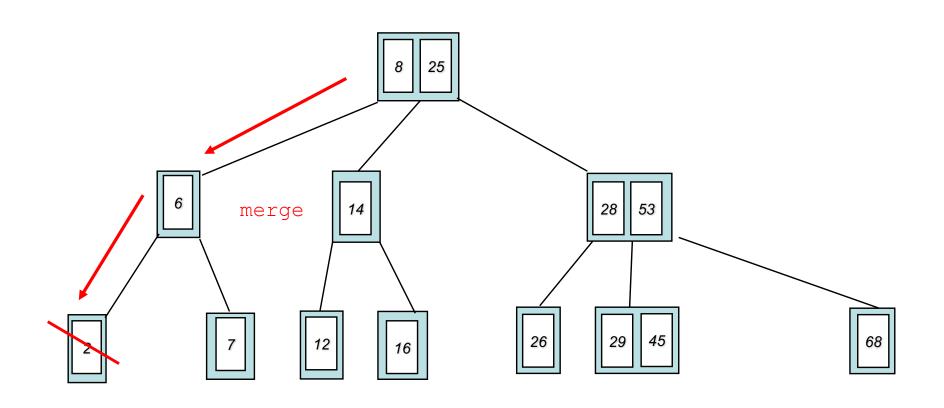
Delete 52: borrow from sibling



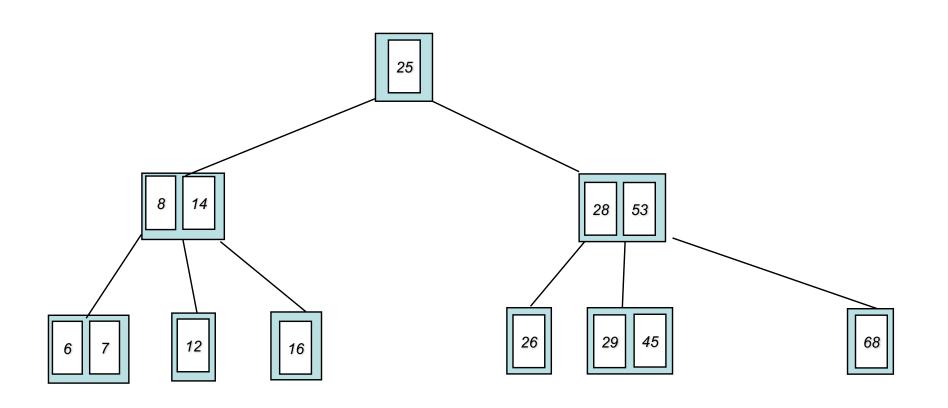
Delete 48: borrow from parent



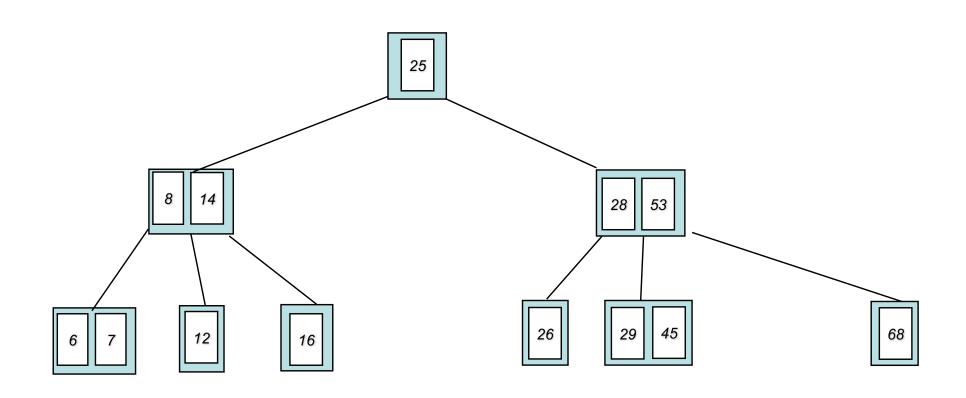
Delete 48: borrow from parent



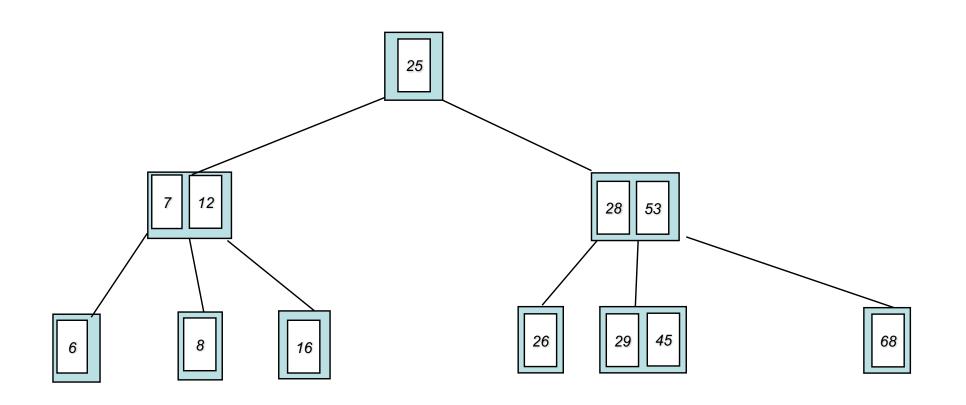
Delete 2: borrow from parent, and parent



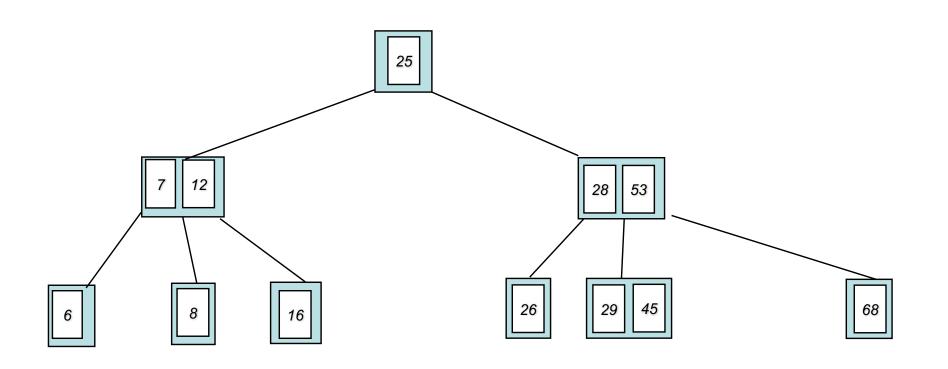
Delete 2: borrow from parent, and parent



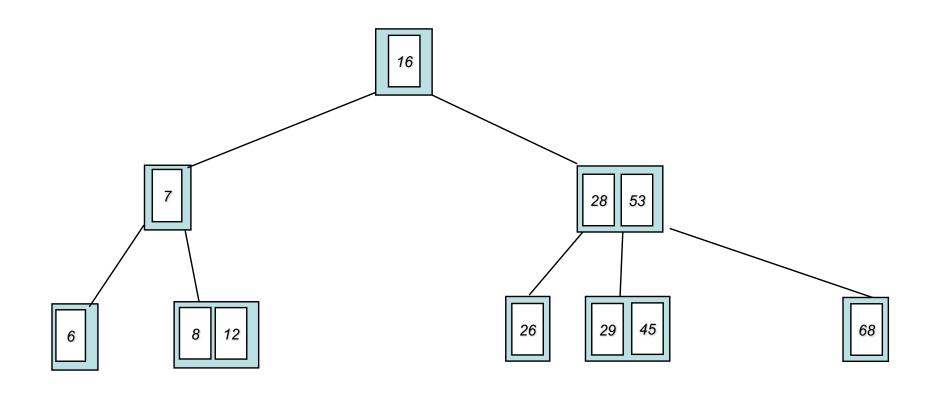
Delete 14: delete 12, swap 12 for 14



Delete 14: delete 12, swap 12 for 14



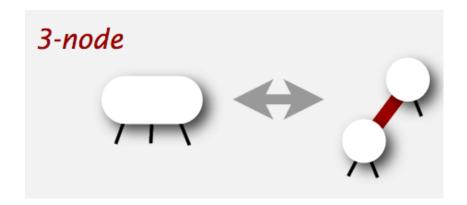
Delete 25: delete 16, swap 16 for 25

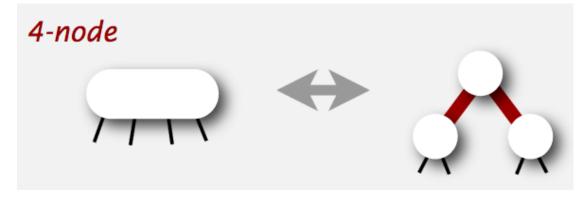


Delete 25: delete 16, swap 16 for 25

Represent 2-3-4 tree as a BST

- Use "internal" red edges for 3- and 4- nodes.
- Require that 3-nodes be left-leaning.





Represent 2-3-4 tree as a BST

- Elementary BST search works
- Easy-to-maintain 1-1 correspondence with 2-3-4 trees
- Trees therefore have perfect black-link balance

