CMSC 132: Object-Oriented Programming II

Big-O Performance Analysis
Execution Time Factors

- **Computer:**
 - CPU speed, amount of memory, etc.

- **Compiler:**
 - Efficiency of code generation.

- **Data:**
 - Number of items to be processed.
 - Initial ordering (e.g., random, sorted, reversed)

- **Algorithm:**
 - E.g., linear vs. binary search.
Are Algorithms Important?

- The fastest algorithm for 100 items may not be the fastest for 10,000 items!
- Algorithm choice is more important than any other factor!
public void SelectionSort (int [] num){
 int i, j, first, temp;
 for (i = num.length - 1; i > 0; i - -)
 {
 first = 0; //initialize to subscript of first element
 for(j = 1; j <= i; j ++)
 {
 if(num[j] < num[first])
 first = j;
 }
 temp = num[first]; //swap smallest found with element in position i.
 num[first] = num[i];
 num[i] = temp;
 }
 System.out.println("4 + 2*(n-1) + 4 + 2 * (n-2)+ ... 4 + 2*1 = 4(n-1) + 2((n-1)+(n-2)+(n-3)...1) = 4(n-1) * 2 n(n-1)/2 =4(n-1) + n^2 - n= n^2 + 3n - 4");
}
What is Big-O?

- Big-O characterizes algorithm performance.

- Big-O describes how execution time grows as the number of data items increase.

- Big-O is a function with parameter N, where N represents the number of items.
Predicting Execution Time

- If a program takes 10ms to process one item, how long will it take for 1000 items?
- \((\text{time for 1 item}) \times (\text{Big-O of time complexity of } N \text{ items})\)

<table>
<thead>
<tr>
<th>(\log_{10} N)</th>
<th>(10^3 \times 10\text{ms})</th>
<th>(.03 \text{ sec})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N)</td>
<td>(10^3 \times 10\text{ms})</td>
<td>(10 \text{ sec})</td>
</tr>
<tr>
<td>(N \log_{10} N)</td>
<td>(10^3 \times 3 \times 10\text{ms})</td>
<td>(30 \text{ sec})</td>
</tr>
<tr>
<td>(N^2)</td>
<td>(10^6 \times 10\text{ms})</td>
<td>(16 \text{ min})</td>
</tr>
<tr>
<td>(N^3)</td>
<td>(10^9 \times 10\text{ms})</td>
<td>(12 \text{ days})</td>
</tr>
</tbody>
</table>
Complexity

- In general, we are not so much interested in the time and space complexity for small inputs.

- For example, while the difference in time complexity between linear and binary search is meaningless for a sequence with $n = 10$, it is gigantic for $n = 2^{30}$.
Complexity

- For example, let us assume two algorithms A and B that solve the same class of problems.

- The time complexity of A is $5,000n$, the one for B is $\lceil 1.1^n \rceil$ for an input with n elements.

- For $n = 10$, A requires 50,000 steps, but B only 3, so B seems to be superior to A.

- For $n = 1000$, however, A requires $5,000,000$ steps, while B requires $2.5 \cdot 10^{41}$ steps.
Complexity

- This means that algorithm B cannot be used for large inputs, while algorithm A is still feasible.

- So what is important is the growth of the complexity functions.

- The growth of time and space complexity with increasing input size n is a suitable measure for the comparison of algorithms.
Complexity

- **Comparison: time complexity of algorithms A and B**

<table>
<thead>
<tr>
<th>Input Size</th>
<th>Algorithm A</th>
<th>Algorithm B</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>$5,000n$</td>
<td>1.1^n</td>
</tr>
<tr>
<td>10</td>
<td>50,000</td>
<td>3</td>
</tr>
<tr>
<td>100</td>
<td>500,000</td>
<td>13,781</td>
</tr>
<tr>
<td>1,000</td>
<td>5,000,000</td>
<td>2.5×10^{41}</td>
</tr>
<tr>
<td>1,000,000</td>
<td>5×10^9</td>
<td>4.8×10^{4192}</td>
</tr>
</tbody>
</table>
The Growth of Functions

The growth of functions is usually described using the big-O notation.

Definition: Let f and g be functions from the integers or the real numbers to the real numbers. We say that $f(x)$ is $O(g(x))$ if there are constants C and k such that

$$|f(x)| \leq C|g(x)|$$

whenever $x > k$.
The Growth of Functions

- When we analyze the growth of complexity functions, f(x) and g(x) are always positive.

- Therefore, we can simplify the big-O requirement to

 \[f(x) \leq C \cdot g(x) \quad \text{whenever } x > k. \]

- If we want to show that f(x) is O(g(x)), we only need to find one pair (C, k) (which is never unique).
The Growth of Functions

- The idea behind the big-O notation is to establish an upper boundary for the growth of a function $f(x)$ for large x.

- This boundary is specified by a function $g(x)$ that is usually much simpler than $f(x)$.

- We accept the constant C in the requirement $f(x) \leq C \cdot g(x)$ whenever $x > k$,

- because C does not grow with x.

- We are only interested in large x, so it is OK if $f(x) > C \cdot g(x)$ for $x \leq k$.
What is Big-O

\[f(n) = O(g(n)) \iff \exists \text{ positive constants } c \text{ and } n_0 \text{ such that } 0 \leq f(n) \leq cg(n) \quad \forall \ n \geq n_0. \]
Big-O Example

\[f(x) = 6x^4 - 2x^3 + 5 \]

Prove \(f(x) = O(n^4) \)

\[|6x^4 - 2x^3 + 5| \leq 6x^4 + |2x^3| + 5 \]
\[\leq 6x^4 + 2x^4 + 5x^4 \]
\[= 13x^4 \]
The Growth of Functions

Example:

Show that \(f(x) = x^2 + 2x + 1 \) is \(O(x^2) \).

For \(x > 1 \) we have:

\[
x^2 + 2x + 1 \leq x^2 + 2x^2 + x^2
\]

\[
\Rightarrow x^2 + 2x + 1 \leq 4x^2
\]

Therefore, for \(C = 4 \) and \(k = 1 \):

\[
f(x) \leq Cx^2 \text{ whenever } x > k.
\]

\[
\Rightarrow f(x) \text{ is } O(x^2).
\]
Common Growth Rates

<table>
<thead>
<tr>
<th>Big-O Characterization</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>$O(1)$</td>
<td>constant</td>
</tr>
<tr>
<td>$O(\log N)$</td>
<td>\log</td>
</tr>
<tr>
<td>$O(N)$</td>
<td>linear</td>
</tr>
<tr>
<td>$O(N \log N)$</td>
<td>n-\log-n</td>
</tr>
<tr>
<td>$O(N^2)$</td>
<td>quadratic</td>
</tr>
<tr>
<td>$O(N^3)$</td>
<td>cubic</td>
</tr>
<tr>
<td>$O(2^N)$</td>
<td>exponential</td>
</tr>
</tbody>
</table>

- Adding to the front of a linked list
- Binary search
- Linear search
- Binary merge sort
- Bubble Sort
- Simultaneous linear equations
- The Towers of Hanoi problem
Common Growth Rates
The Growth of Functions

- Question: If \(f(x) \) is \(O(x^2) \), is it also \(O(x^3) \)?

- Yes. \(x^3 \) grows faster than \(x^2 \), so \(x^3 \) grows also faster than \(f(x) \).

- Therefore, we always have to find the **smallest** simple function \(g(x) \) for which \(f(x) \) is \(O(g(x)) \).
The Growth of Functions

- “Popular” functions $g(n)$ are
 - n, $\log n$, 1, 2^n, n^2, $n!$, n, n^3, $\log n$

- Listed from slowest to fastest growth:
 - 1
 - $\log n$
 - n
 - $n \log n$
 - n^2
 - n^3
 - 2^n
 - $n!$
The Growth of Functions

- A problem that can be solved with polynomial worst-case complexity is called **tractable**.

- Problems of higher complexity are called **intractable**.

- Problems that no algorithm can solve are called **unsolvable**.
Determining Big-O: Repetition

executed \(n \) times:

\[
\begin{align*}
\text{for } & (i = 1; i <= n; i++) \\
\{} & \\
\text{m = m + 2} & \quad \text{constant time} \\
\{} \\
\end{align*}
\]

Total time = (a constant \(c \)) * \(n = cn = \mathcal{O}(N) \)

Ignore multiplicative constants (e.g., “\(c \”).
Determining Big-O: Repetition

\[
\text{for } (i = 1; i \leq n; i++)
\{
 \text{for } (j = 1; j \leq n; j++)
 \{
 k = k + 1;
 \}
\}
\]

outer loop executed \(n\) times

\[
\text{inner loop executed } n \text{ times}
\]

\[
\text{constant time}
\]

Total time \(= c \times n \times n \times = cn^2 = O(N^2)\)
Determining Big-O: Repetition

outer loop executed \(n \) times

\[
\text{for } (i = 1; i \leq n; i++) \\
\{ \\
\quad \text{for } (j = 1; j \leq 100; j++) \\
\quad \{ \\
\quad \quad k = k+1 ; \\
\quad \} \\
\} \\
\]

constant time

inner loop executed \(100 \) times

Total time = \(c \times 100 \times n = 100cn = O(N) \)
Determining Big-O: Sequence

constant time \((c_0)\) →
\[x = x + 1; \]
\[\text{for (i=1; i<=n; i++)} \]
\[\{ m = m + 2; \} \]
\[\text{for (i=1; i<=n; i++)} \]
\[\{ \text{for (j=1; j<=n; j++)} \]
\[\{ k = k + 1; \} \]
\[\} \]
\[\} \]

constant time \((c_1)\) →
\(m = m + 2; \)
\(\text{for (i=1; i<=n; i++)} \)
\(\{ \text{for (j=1; j<=n; j++)} \)
\(\{ k = k + 1; \} \)
\(\} \)
\(\} \)

outer loop executed \(n\) times

inner loop executed \(n\) times

constant time \((c_2)\)

Total time \(= c_0 + c_1 n + c_2 n^2 = O(N^2)\)

Only dominant term is used
Determing Big-O: Selection

test + worst-case(then, else)

test: if (depth() != otherStack.depth())
{ return false; }
else
{ for (int n = 0; n < depth(); n++)
{ if (!list[n].equals(otherStack.list[n]))
return false;
}
}

another if: if (!list[n].equals(otherStack.list[n]))
return false;

Total time = c₀ + Worst-Case(c₁, (c₂ + c₃) * n) = O(N)

1. Total time = c₀ + Worst-Case(then, else)
2. Total time = c₀ + Worst-Case(c₁, else)
Quiz 1

What is the Big-O of the following code?

```c
void foo(int n){
    int i;
    for(int i = 1; i < n; n++);
    print("good");
}
```

A. O(n^2)
B. O(log n)
C. O(n)
D. O(1)
Quiz 1

What is the Big-O of the following code?

```c
void foo(int n){
    int i;
    for(int i = 1; i < n; n++);
    print("good");
}
```

A. \(O(n^2)\)
B. \(O(\log n)\)
C. \(O(n)\)
D. \(O(1)\)
Quiz 2

What is the Big-O of the following code?

```c
void foo(int n){
    int i;
    for(int i = 1; i < n; i++);
        for(int j = 1; j < n; j++);
            print("good");
}
```

A. O(n^2)
B. O(log n)
C. O(n)
D. O(1)
Quiz 2

What is the Big-O of the following code?

```c
void foo(int n){
    int i;
    for(int i = 1; i < n; i++);
        for(int j = 1; j < n; j++)
            print("good");
}
```

A. $O(n^2)$
B. $O(\log n)$
C. $O(n)$
D. $O(1)$
Quiz 3

What is the Big-O of the following code?

```c
void foo(int n) {
    int i = 1;
    int s = 1;
    while(s <= n){
        i++;
        s = s + i;
        print("work");
    }
}
```

A. $O(n^2)$
B. $O(\log n)$
C. $O(n)$
D. $O(\sqrt{n})$
What is the Big-O of the following code?

```c
void foo(int n) {
    int i = 1;
    int s = 1;
    while(s <= n){
        i++;
        s = s + i;
        print("work");
    }
}
```

A. $O(n^2)$
B. $O(\log n)$
C. $O(n)$
D. $O(\sqrt{n})$

S = 1
1+2
1+2+3

$S_k = 1+2+3+k+(k+1)$ after k iteration
$S_k = 2(k+1)$ $k <= n$
k < sqrt(n)
What is the Big-O of the following code?

```c
void foo(int n){
    int i;
    for(i = 1; i*i <= n; i++)
        print("hello");
}
```

A. $O(n^2)$
B. $O(\log n)$
C. $O(n)$
D. $O(\sqrt{n})$
Quiz 4

What is the Big-O of the following code?

```c
void foo(int n) {
    int i;
    for(i = 1; i*i <= n; i++)
        print("hello");
}
```

A. $O(n^2)$
B. $O(\log n)$
C. $O(n)$
D. $O(\sqrt{n})$
Quiz 5

What is the Big-O of the following code?

```c
void foo(int n){
    int i,j,k;
    for(i = 1; i <= n; i++)
        for(j = 1; j <= i; j++)
            for(k=1; k <= 100; k++)
                print("good");
}
```

A. $O(n^2)$
B. $O(\log n)$
C. $O(n)$
D. $O(\sqrt{n})$
Quiz 5

What is the Big-O of the following code?

```c
void foo(int n){
    int i,j,k;
    for(i = 1; i <= n; i++)
        for(j = 1; j <= i; j++)
            for(k=1; k <= 100; k++)
                print("good");
}
```

A. $O(n^2)$
B. $O(\log n)$
C. $O(n)$
D. $O(\sqrt{n})$

```
total = 100 + 200 + 300 + 400 + 500 = 100
(1+2+3+..+n) = 100( n(n-1)/2) = O(n^2)
```
What is the Big-O of the following code?

```c
void foo(int n){
    for(int i = 1; i < n; i = i * 2)
        print("good");
}
```

A. $O(n^2)$
B. $O(\log n)$
C. $O(n)$
D. $O(\sqrt{n})$
What is the Big-O of the following code?

```c
void foo(int n){
    for(int i = 1; i < n; i = i * 2)
        print("good");
}
```

A. $O(n^2)$
B. $O(\log n)$
C. $O(n)$
D. $O(\sqrt{n})$