CMSC 132: Object-Oriented Programming II

Big-O Performance Analysis

Execution Time Factors

- Computer:
- CPU speed, amount of memory, etc.
- Compiler:
- Efficiency of code generation.
- Data:
- Number of items to be processed.
- Initial ordering (e.g., random, sorted, reversed)
- Algorithm:
- E.g., linear vs. binary search.

Are Algorithms Important?

- The fastest algorithm for 100 items may not be the fastest for 10,000 items!
- Algorithm choice is more important than any other factor!

Counting the instructions

```
    public void SelectionSort ( int [ ] num ){
    int i, j, first, temp;
    for (i = num.length - 1; i> 0; i - )
    {
            first = 0; //initialize to subscript of first element
            for(j = 1; j <= i; j ++) I/locate smallest element between positions 1 and i.
            {
                if( num[ j ] < num[ first ] )
                        first = j;
        }
1 time [ { temp = num[ first ]; //swap smallest found with element in position i.
        num[ i ] = temp;
} 4 + 2*(n-1)+4 + 2 *(n-2)+\ldots4 + 2*1 =
    4(n-1) + 2((n-1)+(n-2)+(n-3)\ldots1) = 4(n-1) * 2 n(n-1)/2
    =4(n-1)+ n' - n= n' + 3n-4
```


What is Big-O?

- Big-O characterizes algorithm performance.
- Big-O describes how execution time grows as the number of data items increase.
- Big-O is a function with parameter N , where N represents the number of items.

Predicting Execution Time

- If a program takes 10 ms to process one item, how long will it take for 1000 items?
- (time for 1 item) x (BigO() time complexity of N items)

$\log _{10} N$	$3 \times 10 \mathrm{~ms}$.03 sec
N	$10^{3} \times 10 \mathrm{~ms}$	10 sec
$N \log _{10} N$	$10^{3} \times 3 \times 10 \mathrm{~ms}$	30 sec
N^{2}	$10^{6} \times 10 \mathrm{~ms}$	16 min
N^{3}	$10^{9} \times 10 \mathrm{~ms}$	12 days

Complexity

- In general, we are not so much interested in the time and space complexity for small inputs.
- For example, while the difference in time complexity between linear and binary search is meaningless for a sequence with $n=10$, it is gigantic for $n=2^{30}$.

Complexity

- For example, let us assume two algorithms A and B that solve the same class of problems.
- The time complexity of A is $5,000 \mathrm{n}$, the one for B is $\lceil 1.1 \mathrm{n}\rceil$ for an input with n elements.
- For $n=10$, A requires 50,000 steps, but B only 3 , so B seems to be superior to A.
- For $\mathrm{n}=1000$, however, A requires 5,000,000 steps, while B requires $2.5 \cdot 10^{41}$ steps.

Complexity

- This means that algorithm B cannot be used for large inputs, while algorithm A is still feasible.
- So what is important is the growth of the complexity functions.
- The growth of time and space complexity with increasing input size n is a suitable measure for the comparison of algorithms.

Complexity

- Comparison: time complexity of algorithms A and B

Input Size	Algorithm A	Algorithm B
n	$5,000 \mathrm{n}$	$1 \cdot 1^{\mathrm{n}}$
10	50,000	3
100	500,000	13,781
1,000	$5,000,000$	$2.5^{*} 10^{41}$
$1,000,000$	$5^{*} 10^{9}$	$4.8^{*} 10^{41392}$

The Growth of Functions

- The growth of functions is usually described using the big-O notation.
- Definition: Let f and g be functions from the integers or the real numbers to the real numbers.
- We say that $f(x)$ is $O(g(x))$ if there are constants C and k such that
- $|f(x)| \leq C|g(x)|$
- whenever $\mathrm{x}>\mathrm{k}$.

The Growth of Functions

- When we analyze the growth of complexity functions, $f(x)$ and $g(x)$ are always positive.
- Therefore, we can simplify the big-O requirement to
- $f(x) \leq C \cdot g(x) \quad$ whenever $x>k$.
- If we want to show that $f(x)$ is $O(g(x))$, we only need to find one pair (C, k) (which is never unique).

The Growth of Functions

- The idea behind the big-O notation is to establish an upper boundary for the growth of a function $f(x)$ for large x .
- This boundary is specified by a function $g(x)$ that is usually much simpler than $f(x)$.
- We accept the constant C in the requirement
- $\mathrm{f}(\mathrm{x}) \leq \mathrm{C} \cdot \mathrm{g}(\mathrm{x}) \quad$ whenever $\mathrm{x}>\mathrm{k}$,
- because C does not grow with x.
- We are only interested in large x, so it is OK if $f(x)>C \cdot g(x) \quad$ for $x \leq k$.

What is Big-O

$f(n)=O(g(n))$ iff \exists positive constants c and n_{0} such that $0 \leq f(n) \leq c g(n) \forall n \geq n_{0}$.

Big-O Example

$f(x)=6 x^{4}-2 x^{3}+5$

Prove $f(x)=O\left(n^{4}\right)$

$$
\begin{aligned}
\left|6 x^{4}-2 x^{3}+5\right| & \leq 6 x^{4}+\left|2 x^{3}\right|+5 \\
& \leq 6 x^{4}+2 x^{4}+5 x^{4} \\
& =13 x^{4}
\end{aligned}
$$

The Growth of Functions

- Example:
- Show that $\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}+2 \mathrm{x}+1$ is $\mathrm{O}\left(\mathrm{x}^{2}\right)$.
- For $x>1$ we have:
- $x^{2}+2 x+1 \leq x^{2}+2 x^{2}+x^{2}$
- $\Rightarrow \mathbf{x}^{2}+2 \mathrm{x}+1 \leq 4 \mathbf{x}^{2}$
- Therefore, for $\mathrm{C}=4$ and $\mathrm{k}=1$:
- $f(x) \leq C x^{2}$ whenever $x>k$.
- $\Rightarrow f(x)$ is $O\left(x^{2}\right)$.

Common Growth Rates

Big-O Characterization		Example
$\mathrm{O}(1)$	constant	Adding to the front of a linked list
$\mathrm{O}(\log N)$	\log	Binary search
$\mathrm{O}(N)$	linear	Linear search
$\mathrm{O}(N \log N)$	n-log-n	Binary merge sort
$\mathrm{O}\left(N^{2}\right)$	quadratic	Bubble Sort
$\mathrm{O}\left(N^{3}\right)$	cubic	Simultaneous linear equations
$\mathrm{O}\left(2^{N}\right)$	exponential	The Towers of Hanoi problem

Common Growth Rates

The Growth of Functions

- Question: If $f(x)$ is $O\left(x^{2}\right)$, is it also $O\left(x^{3}\right)$?
- Yes. x^{3} grows faster than x^{2}, so x^{3} grows also faster than $f(x)$.
- Therefore, we always have to find the smallest simple function $g(x)$ for which $f(x)$ is $O(g(x))$.

The Growth of Functions

- "Popular" functions $g(n)$ are
- $n, \log n, 1,2^{n}, n^{2}, n!, n, n^{3}, \log n$
- Listed from slowest to fastest growth:
- 1
- $\quad \log n$
- n
- $n \log n$
- n^{2}
- n^{3}
- $\quad 2^{n}$
- n !

The Growth of Functions

- A problem that can be solved with polynomial worst-case complexity is called tractable.
- Problems of higher complexity are called intractable.
- Problems that no algorithm can solve are called unsolvable.

Determining Big-O: Repetition

Determining Big-O: Repetition

outer loop
executed
n times $\left\{\begin{array}{l}\text { for }(\mathrm{i}=1 ; \mathrm{i}<=\mathrm{n} ; \mathrm{i}++) \\ \left.\left\{\begin{array}{l}\text { for }(\mathrm{j}=1 ; \mathrm{j}<=\mathrm{n} ; \mathrm{j}++\mathrm{t}) \\ \left\{\begin{array}{l}\text { k }=\mathrm{k}+1 ;\end{array}\right. \\ \}\end{array}\right\} \begin{array}{l}\text { constant time }\end{array}\right\} \begin{array}{l}\text { inner loop } \\ \text { executed } \\ n \text { times }\end{array}\end{array}\right.$

Total time $=c^{*} n^{*} n^{*}=\mathrm{cn}^{2}=\mathbf{O}\left(\mathbf{N}^{2}\right)$

Determining Big-O: Repetition

outer loop
executed
n times $\left\{\begin{array}{l}\text { for }(\mathrm{i}=1 ; \mathrm{i}<=\mathrm{n} ; \mathrm{i}++) \\ \left.\left\{\begin{array}{l}\text { for }(\mathrm{j}=1 ; \mathrm{j}<=100 ; \mathrm{j}++) \\ \left\{\begin{array}{l}\mathrm{k}=\mathrm{k}+1 ;\end{array}\right. \\ \}\end{array}\right\} \begin{array}{l}\text { inner loop } \\ \text { executed } \\ 100 \text { times }\end{array}\right\}\end{array}\right.$

Total time $=\mathrm{c} * 100 * \mathrm{n} *=100 \mathrm{cn}=\mathbf{O}(\mathbf{N})$

Determining Big-O: Sequence

Total time $=\mathrm{c}_{0}+\mathrm{c}_{1} \mathrm{n}+\mathrm{c}_{2} \mathrm{n}^{2}=\mathbf{O}\left(\mathbf{N}^{2}\right)$
Only dominant term is used

Determining Big-O: Selection

Quiz 1

What is the Big-O of the following code?

```
void foo(int n) {
    int i;
    for(int i = 1; i < n; n++);
    print("good");
}
```

A. $O\left(n^{2}\right)$
B. $\mathrm{O}(\log \mathrm{n})$
C. $O(n)$
D. $O(1)$

Quiz 1

What is the Big-O of the following code?

```
void foo(int n) {
    int i;
    for(int i = 1; i < n; n++);
    print("good");
}
```

A. $O\left(n^{2}\right)$
B. $\mathrm{O}(\log \mathrm{n})$
C. $O(n)$
D. $O(1)$

Quiz 2

What is the Big-O of the following code?

```
void foo(int n) {
    int i;
    for(int i = 1; i < n; i++);
        for(int j = 1; j < n; j++);
                print("good");
}
```

A. $O\left(n^{2}\right)$
B. $\mathrm{O}(\log \mathrm{n})$
C. $\mathrm{O}(\mathrm{n})$
D. $O(1)$

Quiz 2

What is the Big-O of the following code?

```
void foo(int n) {
    int i;
    for(int i = 1; i < n; i++);
        for(int j = 1; j < n; j++);
                print("good");
}
```

A. $O\left(n^{2}\right)$
B. $\mathrm{O}(\log \mathrm{n})$
C. $\mathrm{O}(\mathrm{n})$
D. $O(1)$

Quiz 3

What is the Big-O of the following code?

```
void foo(int n) {
    int i = 1;
    int s = 1;
    while(s <= n) {
        i++;
        s = s + i;
        print("work");
    }
}
```

A. $O\left(n^{2}\right)$
B. $\mathrm{O}(\log \mathrm{n})$
C. $O(n)$
D. $\mathrm{O}(\sqrt{n})$

Quiz 3

What is the Big-O of the following code?

```
void foo(int n) {
    int i = 1;
    int s = 1;
    while(s <= n){
        i++;
        s = s + i;
        print("work");
    }
}
```

A. $O\left(n^{2}\right)$
B. $\mathrm{O}(\log \mathrm{n})$
C. $O(n)$
D. $\mathrm{O}(\sqrt{n})$

$$
\begin{aligned}
& S=1 \\
& \quad 1+2 \\
& \quad 1+2+3 \\
& S _k=1+2+3+k+(k+1) \text { after } k \text { iteration } \\
& \begin{array}{l}
S _k=2(k+1) k<=n \\
k<~ s q r t(n)
\end{array}
\end{aligned}
$$

Quiz 4

What is the Big-O of the following code?

```
void foo(int n) {
    int i;
    for(i = 1; i*i <= n; i++)
    print("hello");
}
```

A. $O\left(n^{2}\right)$
B. $\mathrm{O}(\log \mathrm{n})$
C. $\mathrm{O}(\mathrm{n})$
D. $\mathrm{O}(\sqrt{n})$

Quiz 4

What is the Big-O of the following code?

```
void foo(int n) {
    int i;
    for(i = 1; i*i <= n; i++)
    print("hello");
}
```

A. $O\left(n^{2}\right)$
B. $\mathrm{O}(\log \mathrm{n})$
C. $\mathrm{O}(\mathrm{n})$
D. $\mathrm{O}(\sqrt{n})$

Quiz 5

What is the Big-O of the following code?

```
void foo(int n){
    int i,j,k;
    for(i = 1; i <= n; i++)
        for(j = 1; j <= i; j++)
            for(k=1; k <= 100; k++)
            print("good");
}
```

A. $O\left(n^{2}\right)$
B. $\mathrm{O}(\log \mathrm{n})$
C. $\mathrm{O}(\mathrm{n})$
D. $\mathrm{O}(\sqrt{n})$

Quiz 5

What is the Big-O of the following code?

```
void foo(int n){
    int i,j,k;
    for(i = 1; i <= n; i++)
        for(j = 1; j <= i; j++)
            for(k=1; k <= 100; k++)
            print("good");
}
```

A. $O\left(n^{2}\right)$
B. $\mathrm{O}(\log \mathrm{n})$
total $=100+200+300+400+500=100$
$(1+2+3+. .+n)=100(n(n-1) / 2)=O\left(n^{\wedge} 2\right)$
C. $O(n)$
D. $\mathrm{O}(\sqrt{n})$

Quiz 6

What is the Big-O of the following code?

```
void foo(int n) {
    for(int i = 1; i < n; i = i * 2)
    print("good");
}
```

A. $O\left(n^{2}\right)$
B. $O(\log n)$
C. $\mathrm{O}(\mathrm{n})$
D. $\mathrm{O}(\sqrt{n})$

Quiz 6

What is the Big-O of the following code?

```
void foo(int n) {
    for(int i = 1; i < n; i = i * 2)
    print("good");
}
```

A. $O\left(n^{2}\right)$
B. $\mathrm{O}(\log \mathrm{n})$
C. $\mathrm{O}(\mathrm{n})$
D. $\mathrm{O}(\sqrt{n})$

