
CMSC 132: Object-Oriented
Programming II

UNDIRECTED GRAPHS

1

Graphs slides are modified from COS 126 slides of
Dr. Robert Sedgewick.

2

Undirected Graphs
Graph: Set of vertices connected pairwise by edges.

3

Undirected Graphs
Why study graph algorithms?
• Thousands of practical applications.
• Hundreds of graph algorithms known.
• Interesting and broadly useful abstraction.
• Challenging branch of computer science and discrete math.

Graph Applications

4

Graph Vertex Edge
communication Telephone, computer fiber optic cable

circuit gate, register, processor wire
mechanical joint rod, beam, spring

financial stock, currency transactions
transportation street intersection, airport highway, airway route

internet class C network connection
game board position legal move

social relationship person, actor friendship, movie cast
chemical

compound
molecule bond

Graph Terminology
Path:
• Sequence of vertices connected

by edges.
Cycle
• Path whose first and last vertices

are the same.
Two vertices are connected if
there is a path between them.

5

Some graph-processing problems
Path:
• Is there a path between s and t ?

Shortest path.
• What is the shortest path between s and t ?

Cycle.
• Is there a cycle in the graph?

Euler tour.
• Is there a cycle that uses each edge exactly once?

Hamilton tour.
• Is there a cycle that uses each vertex exactly once.

Connectivity.
• Is there a way to connect all of the vertices?

6

Some graph-processing problems
MST.
• What is the best way to connect all of the vertices?

Biconnectivity.
• Is there a vertex whose removal disconnects the graph?

Planarity.
• Can you draw the graph in the plane with no crossing edges

Graph isomorphism.
• Do two adjacency lists represent the same graph?

7

Challenge. Which of these
problems are easy? difficult?
intractable?

Graph representation

Graph drawing
• Provides intuition about the structure of the graph.

8

Graph representation
Vertex representation:
• use integers between 0 and V – 1.

Applications: convert between names and integers with
symbol table.

9

No self loop,
No parallel edges

Graph Class
public class Graph{

Graph(int V) //create an empty graph with V
void addEdge(int v, int w) //add an edge v-w
Iterable<Integer>adj(int v) //vertices adjacent to v
int V() //number of vertices
int E() //number of edges
String toString() //string representation

}

10

Set-of-edges graph representation

Maintain a list of the edges (linked list or array).

11

Adjacency-matrix graph representation
Maintain a two-dimensional V-by-V boolean array;
for each edge v–w in graph:
• adj[v][w] = adj[w][v] = true.

12

Adjacency-list graph representation

Maintain vertex-indexed array of lists.

13

Graph representation
In practice. Use adjacency-lists representation.
• Algorithms based on iterating over vertices adjacent

to v.
Real-world graphs tend to be sparse.

14

huge number of vertices,
small average vertex degree

Graph representation

15

Comparisons of three different representations:

Adjacency-list graph representation:
Java implementation

16

public class Graph{
private final int V;
private Bag<Integer>[] adj;
public Graph(int V) {

this.V = V;
adj = (Bag<Integer>[]) new Bag[V];
for (int v = 0; v < V; v++)

adj[v] = new Bag<Integer>();
}

public void addEdge(int v, int w) {
adj[v].add(w);
adj[w].add(v);

}
public Iterable<Integer> adj(int v) {

return adj[v];
}

}

Graph Algorithms: Depth First Search

17

• Trémaux maze exploration Algorithm
• Unroll a ball of string behind you.
• Mark each visited intersection and each visited passage.
• Retrace steps when no unvisited options

Maze Exploration

18

Depth First Search

19

Goal. Systematically search through a graph. Idea. Mimic
maze exploration.

DFS (to visit a vertex v)
Mark v as visited.
Recursively visit all unmarked

vertices w adjacent to v.

• Typical applications:
• Find all vertices connected to a given source vertex.
• Find a path between two vertices.

DFS Demo

20

To visit a vertex v :
Mark vertex v as visited.
Recursively visit all unmarked vertices adjacent to v.

DFS Demo

21

To visit a vertex v :
Mark vertex v as visited.
Recursively visit all unmarked vertices adjacent to v.

V marked[] edgeTo[v]
0 -
1
2
3
4
5
6
7
8

DFS Demo

22

To visit a vertex v :
Mark vertex v as visited.
Recursively visit all unmarked vertices adjacent to v.

V marked[] edgeTo[v]
0 T -
1 T 0
2 T 0
3 T 5
4 T 6
5 T 4
6 T 0
7 F
8 F

Depth-first search

23

public class DepthFirstPaths {
private boolean[] marked;
private int[] edgeTo;
private int s;
public DepthFirstSearch(Graph G, int s) {

...
dfs(G, s);
}
private void dfs(Graph G, int v) {

marked[v] = true;
for (int w : G.adj(v))

if(!marked[w]) {
 dfs(G, w);
edgeTo[w] = v;

}
}

}

Depth-first search properties

24

Proposition. After DFS, can find vertices connected to s in constant time
and can find a path to s (if one exists) in time proportional to its length.

Pf. edgeTo[] is parent-link representation of a tree rooted at s.

public boolean hasPathTo(int v) {return marked[v];}

public Iterable<Integer> pathTo(int v) {
if (!hasPathTo(v)) return null;
Stack<Integer> path = new Stack<Integer>();
for (int x = v; x != s; x = edgeTo[x])

path.push(x);
path.push(s);
return path;

}

Breadth-first search (BFS)
BFS starts at a vertex and and explores the neighbor
vertices first, before moving to the next level neighbors.

25

Repeat until queue is empty:
Remove vertex v from queue.
Add to queue all unmarked vertices

adjacent to v and mark them.

Breadth-first search (BFS)

26

Breadth-first search

27

Depth-first search: Put unvisited vertices on a stack.
Breadth-first search: Put unvisited vertices on a queue.
Shortest path: Find path from s to t that uses fewest number of edges.

BFS (from source vertex s)
Put s onto a FIFO queue, and mark s as visited.
Repeat until the queue is empty:

remove the least recently added vertex v
add each of v's unvisited neighbors to the queue,
and mark them as visited.

Intuition: BFS examines vertices in increasing distance from s.

Breadth-first search

28

public class BreadthFirstPaths {
private boolean[] marked;
private int[] edgeTo;
...
private void bfs(Graph G, int s) {

Queue<Integer> q = new Queue<Integer>();
q.enqueue(s);
marked[s] = true;
while (!q.isEmpty()) {

int v = q.dequeue();
for (int w : G.adj(v)) {

if (!marked[w]){
q.enqueue(w);
marked[w] = true;
edgeTo[w] = v;

}
}

}
}

}

BFS Application: Kevin Bacon Number
Kevin Bacon graph
• Include one vertex for each performer and one for each movie.
• Connect a movie to all performers that appear in that movie
• Compute shortest path from s = Kevin Bacon.

29

Connected components

Goal:
• Partition vertices into connected components.

30

Connected components
Initialize all vertices v as unmarked.
For each unmarked vertex v, run DFS to identify all

vertices discovered as part of the same component.

