CMSC 132: Object-Oriented Programming II

Shortest Paths

One advantage of adjacency list representation over adjacency matrix representation of a graph is that in adjacency list representation, space is saved for sparse graphs.

A. TrueB. False

One advantage of adjacency list representation over adjacency matrix representation of a graph is that in adjacency list representation, space is saved for sparse graphs.

A. TrueB. False

Traversal of a graph is different from tree because

- A. There can be a loop in graph so we must maintain a visited flag for every vertex
- B. DFS of a graph uses stack, but inorder traversal of a tree is recursive
- C. BFS of a graph uses queue, but a time efficient BFS of a tree is recursive.
- D. All of the above

Traversal of a graph is different from tree because

- A. There can be a loop in graph so we must maintain a visited flag for every vertex
- B. DFS of a graph uses stack, but inorder traversal of a tree is recursive
- C. BFS of a graph uses queue, but a time efficient BFS of a tree is recursive.
- D. All of the above

One possible order of Breadth First Search on the following graph

- A. MNOPQR
- B. NQMPOR
- C. QMNPRO
- D. QMNPOR

One possible order of Breadth First Search on the following graph

- A. MNOPQR
- B. NQMPOR
- C. QMNPRO
- D. QMNPOR

Given two vertices in a graph 1 and 6, which of the two traversals (BFS and DFS) can be used to find if there is path from 1 to 6?

- A. Only BFS
- B. Only DFS
- C. Both BFS and DFS
- D. Neither BFS nor DFS

Given two vertices in a graph 1 and 6, which of the two traversals (BFS and DFS) can be used to find if there is path from 1 to 6?

- A. Only BFS
- B. Only DFS
- C. Both BFS and DFS
- D. Neither BFS nor DFS

Consider the DAG with Consider V = $\{1, 2, 3, 4, 5, 6\}$, shown below. Which of the following is NOT a topological ordering?

A. 123456
B. 132456
C. 132465
D. 324165

Consider the DAG with Consider V = $\{1, 2, 3, 4, 5, 6\}$, shown below. Which of the following is NOT a topological ordering?

A. 123456
B. 132456
C. 132465
D. 324165

Shortest Paths

Shortest paths

Given an edge-weighted digraph, find the shortest path from *s* to *t*.

edge-weig	hted digı	raph
4->5	0.35	
5->4	0.35	\sim $(1) \rightarrow (3)$
4->7	0.37	(5)
5->7	0.28	
7->5	0.28	
5->1	0.32	
0->4	0.38	
0->2	0.26	
7->3	0.39	shortest path from 0 to 6
1->3	0.29	0->2 0.26
2->7	0.34	2->7 0.34
6->2	0.40	7->3 0.39
3->6	0.52	3->6 0.52
6->0	0.58	5->0 0.52
6->4	0.93	

Shortest path variants

Which vertices?

- Single source: from one vertex *s* to every other vertex.
- Source-sink: from one vertex *s* to another *t*.
- All pairs: between all pairs of vertices.
- Restrictions on edge weights?
 - Nonnegative weights.
 - Euclidean weights.
 - Arbitrary weights.
- Cycles?

٠

•

٠

- No directed cycles.
- No "negative cycles."
- Simplifying assumption: Shortest paths from *s* to each vertex *v* exist.

Weighted directed edge

public class DirectedEdge

	DirectedEdge(int v, int w, double weight)	weighted edge $v \rightarrow w$
int	from()	vertex v
int	to()	vertex w
double	weight()	weight of this edge
String	toString()	string representation

$$\underbrace{\mathsf{v}}_{\mathsf{weight}} \underbrace{\mathsf{w}}_{\mathsf{w}}$$

Idiom for processing an edge e: int v = e.from(), w = e.to();

Weighted directed edge implementation

```
public class DirectedEdge{
    private final int v, w;
    private final double weight;

    public DirectedEdge(int v, int w, double weight){
        this.v = v;
        this.w = w;
        this.weight = weight;
    }

    public int from() { return v; }
    public int to() { return w; }
    public double weight() { return weight; }
}
```

Edge-weighted digraph

public class EdgeWeightedDigraph

	EdgeWeightedDigraph(int V)	edge-weighted digraph with V vertices
void	<pre>addEdge(DirectedEdge e)</pre>	add weighted directed edge e
Iterable <directededge></directededge>	adj(int v)	edges pointing from v
int	V()	number of vertices
int	E()	number of edges
Iterable <directededge></directededge>	edges()	all edges
String	toString()	string representation

Conventions. Allow self-loops and parallel edges.

Edge-weighted digraph: adjacency-lists representation

Edge-weighted digraph implementation

```
public class EdgeWeightedDigraph{
  private final int V;
  private final Bag<DirectedEdge>[] adj;
  public EdgeWeightedDigraph(int V) {
     this.V = V;
     adj = (Bag<DirectedEdge>[]) new Bag[V];
     for (int v = 0; v < V; v++)
         adj[v] = new Bag<DirectedEdge>();
  }
  public void addEdge(DirectedEdge e) {
      int v = e.from();
      adj[v].add(e);
  }
  public Iterable<DirectedEdge> adj(int v) {
       return adj[v];
  }
}
```

Single-source shortest paths

What is the shortest distance and path from A to H?

Single-source shortest paths

- Data structures: Represent the Shortest Path with two vertexindexed arrays:
 - distTo[v] is length of shortest path from s to v.
 - edgeTo[v] is last edge on shortest path from s to v.

```
public double distTo(int v){
    return distTo[v];
}
public Iterable<DirectedEdge> pathTo(int v){
    Stack<DirectedEdge> path = new Stack<DirectedEdge>();
    DirectedEdge e = edgeTo[v];
    while (e != null){
        path.push(e);
        e = edgeTo[e.from()];
    }
    return path;
}
```

5

Edge relaxation

- Relax edge $e = v \rightarrow w$.
 - distTo[v] is length of shortest known path from s to v.
 - distTo[w] is length of shortest known path from s to w.
 - edgeTo[w] is last edge on shortest known path from s to w.
 - If e = v→w gives shorter path to w through v, update both distTo[w] and edgeTo[w]

v→w successfully relaxes

Edge relaxation

- Relax edge $e = v \rightarrow w$.
 - distTo[v] is length of shortest known path from s to v.
 - distTo[w] is length of shortest known path from s to w.
 - edgeTo[w] is last edge on shortest known path from s to w.
 - If e = v→w gives shorter path to w through v, update both distTo[w] and edgeTo[w]

```
private void relax(DirectedEdge e) {
    int v = e.from(), w = e.to();
    if (distTo[w] > distTo[v] + e.weight()) {
        distTo[w] = distTo[v] + e.weight();
        edgeTo[w] = e;
    }
}
```


Generic shortest-paths algorithm

Generic algorithm (to compute SPT from s)

Initialize distTo[s] = 0 and distTo[v] = ∞ for all other vertices. Repeat until optimality conditions are satisfied: Relax any edge.

Efficient implementations: How to choose which edge to relax?

- Dijkstra's algorithm (nonnegative weights).
- Topological sort algorithm (no directed cycles).
- Bellman-Ford algorithm (no negative cycles).

Dijkstra's algorithm

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges pointing from that vertex.

Dijkstra's algorithm Demo

Pick vertex in List with minimum distance.

V	distTo[]	edgeTo
Α	0	
В	8	
С	8	
D	8	
E	8	
F	8	

Update A's neighbors

V	distTo[]	edgeTo
Α	0	
В	2	0
С	8	
D	1	А
E	∞	
F	8	

Update D's neighbors

\	\checkmark	distTo[]	edgeTo
	4	0	
E	З	2	А
(C	3	D
I	C	1	А
E		3	D
ł	-	9	D
	G	5	D

Update B's neighbors

V	distTo[]	edgeTo
Α	0	
В	2	А
С	3	D
D	1	А
Е	3	D
F	9	D
G	5	D

No Update

Update E's neighbors

V	distTo[]	edgeTo
Α	0	
В	2	А
С	3	D
D	1	А
Е	3	D
F	9	D
G	5	D

No Update

Update C's neighbors

V	distTo[]	edgeTo
Α	0	
В	2	А
С	3	D
D	1	А
Е	3	D
F	8	С
G	5	D

Update G's neighbors

V	distTo[]	edgeTo
Α	0	
В	2	А
С	3	D
D	1	А
Е	3	D
F	6	G
G	5	D

Update F's neighbors

V	distTo[]	edgeTo
Α	0	
В	2	А
С	3	D
D	1	А
Е	3	D
F	6	G
G	5	D

No Update

Dijkstra's algorithm Demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges pointing from that vertex.

Dijkstra's algorithm

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges pointing from that vertex.

Dijkstra's algorithm Implementation

```
public class DijkstraSP{
   private DirectedEdge[] edgeTo;
   private double[] distTo;
   private IndexMinPQ<Double> pq;
  public DijkstraSP(EdgeWeightedDigraph G, int s) {
      edgeTo = new DirectedEdge[G.V()];
      distTo = new double[G.V()];
      pq = new IndexMinPQ<Double>(G.V());
      for (int v = 0; v < G.V(); v++)
         distTo[v] = Double.POSITIVE INFINITY;
      distTo[s] = 0.0;
      pq.insert(s, 0.0);
      while (!pq.isEmpty()) {
         int v = pq.delMin();
         for (DirectedEdge e : G.adj(v))
             relax(e);
      }
  }
```

}

Shortest Path Demo

Shortest Path Demo

Shortest Path Demo

Acyclic shortest paths

 Consider vertices in topological order. Relax all edges pointing from that vertex.

Acyclic shortest paths

- · Consider vertices in topological order.
- Relax all edges pointing from that vertex.

Longest paths in edge-weighted DAGs

- Formulate as a shortest paths problem in edge-weighted DAGs.
 - Negate all weights.

٠

٠

- Find shortest paths.
- Negate weights in result

Key point. Topological sort algorithm works even with negative weights.

longest paths input	shortest paths input	
5->4 0.35 4->7 0.37	5->4 -0.35 4->7 -0.37	
5->7 0.28	5->7 -0.28	\$
5->1 0.32 4->0 0.38	5->1 -0.32 4->0 -0.38	(1)
0->2 0.26 3->7 0.39	0->2 -0.26 3->7 -0.39	\overrightarrow{D} (2)
1->3 0.29	1->3 -0.29	
7->2 0.34 6->2 0.40	7->2 -0.34 6->2 -0.40	
3->6 0.52 6->0 0.58	3->6 -0.52 6->0 -0.58	
6->4 0.93	6->4 -0.93	

Longest paths in edge-weighted DAGs

Parallel job scheduling.

•

 Given a set of jobs with durations and precedence constraints, schedule the jobs (by finding a start time for each) so as to achieve the minimum completion time, while respecting the constraints.

Critical path method

To solve a parallel job-scheduling problem, create edge-weighted DAG:

- Source and sink vertices.
- Two vertices (begin and end) for each job.
- Three edges for each job.
 - > Begin to end (weighted by duration)
 - > Source to begin(0 weight)
 - > End to sink(0 weight)

One edge for each precedence constraint (0 weight).

Critical path method

Use longest path from the source to schedule each job.

There are multiple shortest paths between vertices S and T. Which one will be reported by Dijstra's shortest path algorithm?

- A. SDT
- B. SBDT
- C. SACDT
- D. SACET

There are multiple shortest paths between vertices S and T. Which one will be reported by Dijstra's shortest path algorithm?

- A. SDT
- B. SBDT
- C. SACDT
- D. SACET

In an unweighted, undirected connected graph, the shortest path from a node S to every other node is computed most efficiently, in terms of time complexity by

- A. Dijkstra's algorithm starting from S.
- B. Performing a DFS starting from S.
- C. Performing a BFS starting from S.
- D. None of the above

In an unweighted, undirected connected graph, the shortest path from a node S to every other node is computed most efficiently, in terms of time complexity by

- A. Dijkstra's algorithm starting from S.
- B. Performing a DFS starting from S.
- C. Performing a BFS starting from S.
- D. None of the above