	
[image: image1.png]

	University of Maryland College Park

	
	Dept of Computer Science

	
	CMSC132 Summer 2009

	
	Midterm Key

First Name (PRINT): ___

Last Name (PRINT): ___

University ID: ___
Section/TAName: ___
I pledge on my honor that I have not given or received any unauthorized assistance on this examination.

Your signature: ___

Instructions
· This exam is a closed-book and closed-notes exam.
· Total point value is 100 points, 50 minutes exam.
· Please use a pencil to complete the exam.
· PUNT RULE: For any question, you may write PUNT, and you will get ¼ of the points for the question (rounded down). If you feel totally lost on a question, you are encouraged to punt rather than write down an incorrect answer in hopes of getting some partial credit.
· WRITE NEATLY. If we cannot understand your answer, we will not grade it (i.e., 0 credit).
Grader Use Only

	#1
	Algorithmic Complexity
	(18)
	

	#2
	Program Correctness
	(10)
	

	#3
	Hashing
	(6)
	

	#4
	Language Features
	(22)
	

	#5
	Event-Driven Programming
	(4)
	

	#6
	Sets and Maps
	(20)
	

	#7
	Linear Data Structures
	(20)
	

	Total
	Total (100)
	(100)
	

	
	
	
	

Problem 1 (18 pts) Algorithmic Complexity

1. (6 pts) Calculate the asymptotic complexity of the code snippets below (using big-O notation) with

 respect to the problem size n.

a. for (int i=0; i<=0; i=i+ n) {

f(n) = O(
1
)

System.out.println("Hello");

 }

b. for (i =1; i<=n; i++) {

f(n) = O(
n2
)

for (t =1; t<= n/5; t++) {

System.out.println("Hello");

}

 }

c. for (int i=1; i<=n; i=i*2) {

f(n) = O(nlog(n)
)

 for (int k=1; k<=n/3; k++) {

System.out.println("Hello");

 }

 }

2. (4 points) Give the asymptotic bound of the following functions:

a. n + nlog(n) - nlog(n)

f(n) = O(
n
)

b. 8n4 + n + n2+ nlog(n) + 6n4

f(n) = O(
n4
)
3. (2 pts) List the following big-O expressions in order of asymptotic complexity (lowest complexity first)
O(nlog(n))

O(n!)

O(2n)

 O(log(n))
Answer: O(log(n)) O(nlog(n)) O(2n) O(n!)
4. (2 pts) Circle the critical section in the following code fragment

for (int x = 0; x < n; x++)

for (int y = 0; y < n; y++)

System.out.println(x + " " + y);

Answer: The output statement represents the critical section
5. (2 pts) Provide an example of an array operation with a complexity of O(1)
Answer: Array indexing
6. (2 pts) What is an NP problem?
Answer: Problem where solving all cases in a reasonable amount of time is not possible.
Problem 2 (10 pts) Program Correctness and Exceptions
1. (4 pts) The method evaluate may throw an exception (IllegalArgumentException) according to the argument value provided. Modify the following code fragment so the exception is handled by a catch clause in processInfo. The catch clause will display the message “Invalid argument” using System.out.println.

public void processInfo() {

int y = 20;

int result = evaluate(y);

System.out.println(result);

 }

Answer:

public void processInfo() {

int y = 20;

try {

int result = evaluate(y);

System.out.println(result);

}

catch(IllegalArgumentException e) {

System.out.println("Invalid argument");

}

}
2. (2 pts) The method computeValue throws a checked exception (named MyException). Modify the following code so we don’t have to handle it in the method generateResults.

public static void main(String[] args) {

new ExampleChecked().generateResults();

}

public void generateResults() {

computeValue(10);

}

Answer:

public static void main(String[] args) throws MyException {

new ExampleCheckedImp().generateResults();

}

public void generateResults() throws MyException {

computeValue(10);

}

3. (2 pts) What is the functionality associated with a finally block?

Answer:

Encloses code we want always to execute

4. (2 pts) What does it mean for a piece of code to have 50% code coverage?

Answer:

It means the set of tests has executed 50% of the code.

 Problem 3 (6 pts) Hashing
1. (1 pt) F (From the Java Hash Code contract we can deduce that two objects that have the same hashCode() value must be equals according to the equals method.
2. (1 pt) F (Through hashing the best performance we can have for a search operation is O(log(n)).
3. (1 pt) F (The Java Hash Code Contract is not violated when two objects that are considered the
 same (according to the equals method) have different hashCode() values.
4. (1 pt) T (A collision occurs when two entries are assigned to the same hash table entry.

5. (2 pts) Define a possible hashCode() method for the following class:

public class Route {

private int id;

private String description;

public boolean equals(Object obj) {

if (obj == this)

return true;

if (!(obj instanceof Route))

return false;

return id == ((Route)obj).id;

}

public int hashCode() {

// define

}

 }

One Possible Answer:

public int hashCode() {

return id;

 }

Problem 4 (22 pts) Java Language Features

1. (2 pts) T (Java methods are examples of procedural abstractions.
2. (2 pts) F (An interface in Java is an example of data abstraction.

3. (2 pts) T (The default clone method performs a shallow copy.
4. (2 pts) T (A class constructor implicitly invokes the constructor for the super class.
5. (2 pts) F (A static initialization block is executed every time an instance of a class is created.
6. (2 pts) T (A final method cannot be overridden by a subclass.
7. (2 pts) F (The following variable declaration is legal only if the abstract class Bus has a constructor.
Bus x = new Bus();
8. (2 pts) T (A class extending an abstract class will become abstract if abstract method(s) from the super class are not defined in the subclass.
9. (2 pts) Complete the following declaration so we have an ArrayList with objects that belong to the Toy class or are subtypes of this class.

 ArrayList<
? extends Toy > bList;

10. (2 pts) Complete the following declaration so we have an ArrayList with objects that can be of any type.

 ArrayList<
? > cList;

OR

ArrayList<
? extends Object > cList;

11. (2 pts) The Record interface defines a single method with the following signature: public void play();
Complete the following assignment where y is assigned an object that implements the Record interface

 and the method play() will print (using System.out.println) the message “Playing record”.

Answer:

Record y = new Record() {

public void play() {

System.out.println("Playing record");

}

};
Problem 5 (4 pts) Event-Driven Programming
1. (2 pts) For our first project (ClearCellGame) which component (of the Model-View-Controller) did you implement?
Answer:

Model

2. (2 pts) What is an event listener?

Answer:

Section of code that responds when an event is triggered.
Problem 6 (20 pts) Sets and Maps

The BusRoutes class keeps tracks of a city’s bus routes. Each route is identified by unique number.
public class BusRoutes {

 Map<Integer, ArrayList<String>> map;

 public BusRoutes() { // YOU MUST IMPLEMENT THIS METHOD }

 public void addStopToRoute(Integer routeNumber, String stop) { // YOU MUST IMPLEMENT THIS METHOD }

 public Set<Integer> getRouteNumbersWithStop(String stop) {// YOU MUST IMPLEMENT THIS METHOD }

}
What You Must Implement

1. (2 pts) Implement a constructor for the class that creates an empty map.
Answer:

public BusRoutesImp() {

map = new HashMap<Integer, ArrayList<String>>();

}

2. (9 pts) Implement the addStopToRoute method that adds the specified stop to the end of the ArrayList representing the route. A map entry for the bus route must be created if one does not exist.
Answer:

public void addStopToRoute(Integer routeNumber, String stop) {

ArrayList<String> route = map.get(routeNumber);

if (route == null) {

route = new ArrayList<String>();

map.put(routeNumber, route);

}

route.add(stop);

}
3. (9 pts) Implement the getRouteNumbersWithStop method which returns a set of route numbers that includes the specified stop. We should be able to print the elements present in the returned set in sorted order.
Answer:

public Set<Integer> getRouteNumbersWithStop(String stop) {

Set<Integer> result = new TreeSet<Integer>();

for (Integer routeNumber : map.keySet())

if (map.get(routeNumber).contains(stop))

result.add(routeNumber);

return result;

}

You may find the following Map methods helpful:

· V get(Object key) - Returns the value to which this map maps the specified key.

· V put(K key,V value) - Associates the specified value with the specified key in this map.

· Set<K> keySet() - Returns a set view of the keys contained in this map.

· boolean isEmpty() - Returns true if this map contains no key-value mappings.
You may find the following ArrayList methods helpful:

· boolean contains(Object o) - Returns true if this list contains the specified element.
· boolean add(E o) - Appends the specified element to the end of this list.
· boolean isEmpty() - Returns true if this list contains no elements.
Problem 7 (20 pts) Linear Data Structures

Implement the methods below based on the following Java class definitions. You may not add any instance variables, static variables or auxiliary methods to the LinkedList class. In addition, you may not use the Java API LinkedList class.
public class LinkedList<T extends Comparable<T>> {

private class Node {

private T data;

private Node next;

public Node(T data) {

this.data = data;

next = null;

}

}

private Node head; /* List head pointer */

public LinkedList() { // YOU MUST IMPLEMENT THIS METHOD }

public void removeFirstNEelements(int N) { // YOU MUST IMPLEMENT THIS METHOD }

public void addBefore(T elem, T toInsert) { // YOU MUST IMPLEMENT THIS METHOD }

}
1. (2 pts) Implement a constructor that defines an empty list.
Answer:
public LinkedList() {

head = null;

}
2. (6 pts) Implement the method removeFirstNElements that removes the first N elements from the list. For example, if the list is a list of integers, and we have the elements 10, 3, 4, 7, 15 calling the function with 2 as argument will generate the list 4, 7, 15. If the argument exceeds the size of the list, the list will become an empty list.
Answer:

public void removeFirstNEelements(int N) {

Node curr = head;

int cnt = 0;

while (curr != null && cnt++ < N)

curr = curr.next;

head = (cnt < N) ? null : curr;

}

3. (12 pts) Implement the method addBefore which adds toInsert before the first instance of elem in the list. The list should not be modified if elem is not part of the list.
Answer:

public void addBefore(T elem, T toInsert) {

Node prev=null, curr = head;

while (curr != null) {

if (curr.data.compareTo(elem) == 0) {

Node newNode = new Node(toInsert);

if (curr == head) {

newNode.next = head;

head = newNode;

} else {

newNode.next = curr;

prev.next = newNode;

}

break;

} else {

prev = curr;

curr = curr.next;

}

}

}

PAGE
9

_1146486588.bin

