CMSC 330: Organization of Programming Languages

DFAs, and NFAs, and Regexps
Types of Finite Automata

- Deterministic Finite Automata (DFA)
 - Exactly one sequence of steps for each string
 - All examples so far

- Nondeterministic Finite Automata (NFA)
 - May have many sequences of steps for each string
 - Accepts if any path ends in final state at end of string
 - More compact than DFA
 - But more expensive to test whether a string matches
Comparing DFAs and NFAs

- NFAs can have more than one transition leaving a state on the same symbol

 ![Diagram showing multiple transitions on the same symbol](image)

- DFAs allow only one transition per symbol
 - i.e., transition function must be a valid function
 - DFA is a special case of NFA
Comparing DFAs and NFAs (cont.)

- NFAs may have transitions with empty string label
 - May move to new state without consuming character

- DFA transition must be labeled with symbol
 - DFA is a special case of NFA
DFA for (a|b)*abb
NFA for \((a|b)^*abb\)

- **ba**
 - Has paths to either \(S0\) or \(S1\)
 - Neither is final, so rejected

- **babaabb**
 - Has paths to different states
 - One path leads to \(S3\), so accepts string
NFA for \((ab|aba)^*\)

- **aba**
 - Has paths to states S0, S1

- **ababa**
 - Has paths to S0, S1
 - Need to use \(\varepsilon\)-transition
Comparing NFA and DFA for \((ab|aba)^*\)
Quiz 1: Which DFA matches this regexp?

\[ba^+ (a \mid b) \]

A.

B.

C.

D. None of the above
Quiz 1: Which DFA matches this regexp?

$ba^+ (a | b)$

A.

B.

C.

D. None of the above
How NFA Acceptance Works

- When NFA processes a string s
 - NFA must keep track of several “current states”
 - Due to multiple transitions with same label
 - ε-transitions
 - If any current state is final when done then accept s

- Example
 - After processing “a”
 - NFA may be in states
 - S_1
 - S_2
 - S_3
Relating REs to DFAs and NFAs

- Regular expressions, NFAs, and DFAs accept the same languages!
Formal Definition

A deterministic finite automaton (DFA) is a 5-tuple \((\Sigma, Q, q_0, F, \delta)\) where

- \(\Sigma\) is an alphabet
- \(Q\) is a nonempty set of states
- \(q_0 \in Q\) is the start state
- \(F \subseteq Q\) is the set of final states
- \(\delta : Q \times \Sigma \rightarrow Q\) specifies the DFA's transitions

- What's this definition saying that \(\delta\) is?

A DFA accepts \(s\) if it stops at a final state on \(s\)
Formal Definition: Example

- $\Sigma = \{0, 1\}$
- $Q = \{S0, S1\}$
- $q_0 = S0$
- $F = \{S1\}$

or as \{(S0, 0, S0), (S0, 1, S1), (S1, 0, S0), (S1, 1, S1)\}
Nondeterministic Finite Automata (NFA)

- An NFA is a 5-tuple $(\Sigma, Q, q_0, F, \delta)$ where
 - Σ, Q, q_0, F as with DFAs
 - $\delta \subseteq Q \times (\Sigma \cup \{ \epsilon \}) \times Q$ specifies the NFA's transitions

- An NFA accepts s if there is at least one path via s from the NFA’s start state to a final state
Reducing Regular Expressions to NFAs

Goal: Given regular expression A, construct NFA: $\langle A \rangle = (\Sigma, Q, q_0, F, \delta)$

- Remember regular expressions are defined recursively from primitive RE languages
- Invariant: $|F| = 1$ in our NFAs
 - Recall F = set of final states

Will define $\langle A \rangle$ for base cases: σ, ε, \emptyset
- Where σ is a symbol in Σ

And for inductive cases: AB, $A|B$, A^*
Reducing Regular Expressions to NFAs

Base case: σ

\[
<\sigma> = (\{\sigma\}, \{S0, S1\}, S0, \{S1\}, \{(S0, \sigma, S1)\})
\]
Base case: ε

$\langle \varepsilon \rangle = (\emptyset, \{S0\}, S0, \{S0\}, \emptyset)$

Base case: \emptyset

$\langle \emptyset \rangle = (\emptyset, \{S0, S1\}, S0, \{S1\}, \emptyset)$
Reduction: Concatenation

- Induction: AB

$$\langle A \rangle = (\Sigma_A, Q_A, q_A, \{f_A\}, \delta_A)$$
$$\langle B \rangle = (\Sigma_B, Q_B, q_B, \{f_B\}, \delta_B)$$
Reduction: Concatenation

Induction: \(AB \)

- \(<A> = (\Sigma_A, Q_A, q_A, \{f_A\}, \delta_A) \)
- \(= (\Sigma_B, Q_B, q_B, \{f_B\}, \delta_B) \)
- \(<AB> = (\Sigma_A \cup \Sigma_B, Q_A \cup Q_B, q_A, \{f_B\}, \delta_A \cup \delta_B \cup \{(f_A, \varepsilon, q_B)\}) \)
Reduction: Union

- **Induction:** $A|B$

- $<A> = (\Sigma_A, Q_A, q_A, \{f_A\}, \delta_A)$
- $ = (\Sigma_B, Q_B, q_B, \{f_B\}, \delta_B)$
Reduction: Union

- Induction: \(A|B \)

- \(\langle A \rangle = (\Sigma_A, Q_A, q_A, \{f_A\}, \delta_A) \)
- \(\langle B \rangle = (\Sigma_B, Q_B, q_B, \{f_B\}, \delta_B) \)
- \(\langle A|B \rangle = (\Sigma_A \cup \Sigma_B, Q_A \cup Q_B \cup \{S0,S1\}, S0, \{S1\}, \delta_A \cup \delta_B \cup \{(S0,\varepsilon,q_A), (S0,\varepsilon,q_B), (f_A,\varepsilon,S1), (f_B,\varepsilon,S1)\}) \)
Reduction: Closure

Induction: A^*

$A^* = (\Sigma_A, Q_A, q_A, \{f_A\}, \delta_A)$
Reduction: Closure

- **Induction:** A^*

\[A^* = (\Sigma_A, Q_A, q_A, \{S0,S1\}, S0, \{S1\}, \delta_A, \{(f_A,\epsilon,S1), (S0,\epsilon,q_A), (S0,\epsilon,S1), (S1,\epsilon,S0)\}) \]
Quiz 2: Which NFA matches a^*?
Quiz 2: Which NFA matches a^*?

A.

B.

C.

D.

CMSC 330 Summer 2017
Quiz 3: Which NFA matches $a|b^*$?
Quiz 3: Which NFA matches $a|b^*$?

A.

B.

D.

CMSC 330 Summer 2017
RE-> NFA

Draw NFAs for the regular expression (0|1)*110*
Draw NFAs for the regular expression \((ab^*c|d^*a|ab)d\)
Reduction Complexity

- Given a regular expression A of size n...
 Size = # of symbols + # of operations

- How many states does $<A>$ have?
 - Two added for each $|$, two added for each $*$
 - $O(n)$
 - That’s pretty good!
Recap

- **Finite automata**
 - Alphabet, states…
 - \((\Sigma, Q, q_0, F, \delta)\)

- **Types**
 - Deterministic (DFA)
 - Non-deterministic (NFA)

- **Reducing RE to NFA**
 - Concatenation
 - Union
 - Closure
Reducing NFA to DFA

DFA ← transform to NFA
DFA ← RE
NFA → RE
NFA → transform to DFA

Can transform
Reducing NFA to DFA

- NFA may be reduced to DFA
 - By explicitly tracking the set of NFA states

- Intuition
 - Build DFA where
 - Each DFA state represents a set of NFA “current states”

- Example

\[
\begin{align*}
S1 & \xrightarrow{a} S2 & S2 & \xrightarrow{\varepsilon} S3 \\
S1 & \xrightarrow{a} S1, S2, S3 & S1 & \xrightarrow{a} S1, S2, S3
\end{align*}
\]
Algorithm for Reducing NFA to DFA

- Reduction applied using the subset algorithm
 - DFA state is a subset of set of all NFA states

- Algorithm
 - Input
 - NFA (Σ, Q, q₀, Fₙ, δ)
 - Output
 - DFA (Σ, R, r₀, Fₐ, δ)
 - Using two subroutines
 - ε-closure(p)
 - move(p, a)
ε-transitions and ε-closure

- We say $p \xrightarrow{\varepsilon} q$
 - If it is possible to go from state p to state q by taking only ε-transitions
 - If $\exists \ p, p_1, p_2, \ldots \ p_n, q \in Q$ such that
 - $\{p,\varepsilon,p_1\} \in \delta$, $\{p_1,\varepsilon,p_2\} \in \delta$, ..., $\{p_n,\varepsilon,q\} \in \delta$

- ε-closure(p)
 - Set of states reachable from p using ε-transitions alone
 - Set of states q such that $p \xrightarrow{\varepsilon} q$
 - ε-closure(p) = \{q | p \xrightarrow{\varepsilon} q \}
 - Note
 - ε-closure(p) always includes p
 - ε-closure() may be applied to set of states (take union)
\(\varepsilon\)-closure: Example 1

- Following NFA contains
 - \(S_1 \xrightarrow{\varepsilon} S_2\)
 - \(S_2 \xrightarrow{\varepsilon} S_3\)
 - \(S_1 \xrightarrow{\varepsilon} S_3\)

 - Since \(S_1 \xrightarrow{\varepsilon} S_2\) and \(S_2 \xrightarrow{\varepsilon} S_3\)

- \(\varepsilon\)-closures
 - \(\varepsilon\)-closure\((S_1)\) = \(\{ S_1, S_2, S_3 \}\)
 - \(\varepsilon\)-closure\((S_2)\) = \(\{ S_2, S_3 \}\)
 - \(\varepsilon\)-closure\((S_3)\) = \(\{ S_3 \}\)
 - \(\varepsilon\)-closure\((\{ S_1, S_2 \}\)) = \(\{ S_1, S_2, S_3 \}\) \(\cup\) \(\{ S_2, S_3 \}\)
ε-closure: Example 2

Following NFA contains

- S1 \(\xrightarrow{\varepsilon} \) S3
- S3 \(\xrightarrow{\varepsilon} \) S2
- S1 \(\xrightarrow{\varepsilon} \) S2

Since S1 \(\xrightarrow{\varepsilon} \) S3 and S3 \(\xrightarrow{\varepsilon} \) S2

ε-closures

- \(\varepsilon \)-closure(S1) = \{ S1, S2, S3 \}
- \(\varepsilon \)-closure(S2) = \{ S2 \}
- \(\varepsilon \)-closure(S3) = \{ S2, S3 \}
- \(\varepsilon \)-closure(\{ S2, S3 \}) = \{ S2 \} \cup \{ S2, S3 \}
Calculating move(p,a)

- move(p,a)
 - Set of states reachable from p using exactly one transition on a
 - Set of states q such that \(\{p, a, q\} \in \delta \)
 - \(\text{move}(p,a) = \{q \mid \{p, a, q\} \in \delta\} \)
 - Note: move(p,a) may be empty \(\emptyset \)
 - If no transition from p with label a
move(a,p) : Example 1

- Following NFA
 - $\Sigma = \{a, b\}$

- Move
 - $\text{move}(S1, a) = \{S2, S3\}$
 - $\text{move}(S1, b) = \emptyset$
 - $\text{move}(S2, a) = \emptyset$
 - $\text{move}(S2, b) = \{S3\}$
 - $\text{move}(S3, a) = \emptyset$
 - $\text{move}(S3, b) = \emptyset$
move(a,p) : Example 2

- Following NFA
 - $\Sigma = \{ a, b \}$

- Move
 - $\text{move}(S1, a) = \{ S2 \}$
 - $\text{move}(S1, b) = \{ S3 \}$
 - $\text{move}(S2, a) = \{ S3 \}$
 - $\text{move}(S2, b) = \emptyset$
 - $\text{move}(S3, a) = \emptyset$
 - $\text{move}(S3, b) = \emptyset$
Input NFA (Σ, Q, q_0, F_n, δ), Output DFA (Σ, R, r_0, F_d, δ)

Algorithm

Let $r_0 = \varepsilon$-closure(q_0), add it to R // DFA start state

While \exists an unmarked state $r \in R$ // process DFA state r

Mark r // each state visited once

For each $a \in \Sigma$ // for each letter a

Let $S = \{s \mid q \in r \& \text{move}(q,a) = s\}$ // states reached via a

Let $e = \varepsilon$-closure(S) // states reached via ε

If $e \notin R$ // if state e is new

Let $R = R \cup \{e\}$ // add e to R (unmarked)

Let $\delta = \delta \cup \{r, a, e\}$ // add transition $r \rightarrow e$

Let $F_d = \{r \mid \exists s \in r \text{ with } s \in F_n\}$ // final if include state in F_n
NFA → DFA Example 1

• Start = ε-closure(S1) = \{ {S1,S3} \}
• R = \{ {S1,S3} \}
• r \in R = \{S1,S3\}
• Move({S1,S3},a) = \{S2\}
 ➢ e = ε-closure({S2}) = \{S2\}
 ➢ R = R \cup \{S2\} = \{ {S1,S3}, {S2} \}
 ➢ δ = δ \cup \{ {S1,S3}, a, {S2} \}
• Move({S1,S3},b) = \ø
NFA \rightarrow DFA Example 1 (cont.)

- $R = \{ \{S1,S3\}, \{S2\} \}$
- $r \in R = \{S2\}$
- $\text{Move}(\{S2\}, a) = \emptyset$
- $\text{Move}(\{S2\}, b) = \{S3\}$
 - $e = \varepsilon$-closure(\{S3\}) = \{S3\}
 - $R = R \cup \{\{S3\}\} = \{ \{S1,S3\}, \{S2\}, \{S3\} \}$
 - $\delta = \delta \cup \{\{S2\}, b, \{S3\}\}$

CMSC 330 Summer 2017
NFA → DFA Example 1 (cont.)

• \(R = \{ \{S1, S3\}, \{S2\}, \{S3\} \} \)
• \(r \in R = \{S3\} \)
• \(\text{Move}\{S3\}, a) = \emptyset \)
• \(\text{Move}\{S3\}, b) = \emptyset \)
• \(\text{Mark } \{S3\}, \text{exit loop} \)
• \(F_d = \{\{S1, S3\}, \{S3\}\} \)
 ➢ Since \(S3 \in F_n \)
• Done!
NFA \rightarrow DFA Example 2

NFA

DFA

\[R = \{ \{A\}, \{B,D\}, \{C,D\} \} \]
Quiz 4: Which DFA is equiv to this NFA?

NFA:

A.

B.

C.

D. None of the above
Quiz 4: Which DFA is equiv to this NFA?

NFA:

A.

B.

C.

D. None of the above
Actual Answer

NFA:

S0 a S1 b S2
 ε

S0 a S1 b S2, S0
 a b

S0 a S1 b S2, S0
 a b
NFA → DFA Example 3

R = \{ \{A,E\}, \{B,D,E\}, \{C,D\}, \{E\} \}
NFA \rightarrow DFA Example

- Transition diagram for NFA:
 - States: A, B, C, D
 - Transitions:
 - A to B on 0
 - A to C on ε
 - C to D on 1
 - C to B on 0,1

- DFA construction:
 - States for DFA: 1, 2, 3, 4
 - Transitions:
 - ε transition from state 1 to state 2
 - From state 2 to state 3 on 1
 - From state 3 to state 4 on 1
 - From state 4 to state 1 on 1

CMSC 330 Summer 2017
NFA → DFA Practice

Diagram:

- States: 0, 1, 2, 3
- Transitions:
 - From 0 to 1 on 'a'
 - From 1 to 0 on 'a'
 - From 1 to 3 on 'b'
 - From 3 to 1 on 'a'
 - From 2 to 3 on 'ε'
 - From 3 to 2 on 'ε'
 - From 0 to 2 on 'a'
 - From 2 to 3 on 'ε'

This diagram represents the transition between NFA and DFA practice.
NFA \rightarrow DFA Practice
Analyzing the reduction

- Any string from \{A\} to either \{D\} or \{CD\}
 - Represents a path from A to D in the original NFA

NFA

DFA
Analyzing the Reduction

- Can reduce any NFA to a DFA using subset alg.
- How many states in the DFA?
 - Each DFA state is a subset of the set of NFA states
 - Given NFA with \(n \) states, DFA may have \(2^n \) states
 - Since a set with \(n \) items may have \(2^n \) subsets
 - Corollary
 - Reducing a NFA with \(n \) states may be \(O(2^n) \)
Reducing DFA to RE
Reducing DFAs to REs

- General idea
 - Remove states one by one, labeling transitions with regular expressions
 - When two states are left (start and final), the transition label is the regular expression for the DFA
DFA to RE example

Language over $\Sigma = \{0,1\}$ such that every string is a multiple of 3 in binary
DFA to RE example

Language over $\Sigma = \{0,1\}$ such that every string is a multiple of 3 in binary

$$(0 + 1(01^*01)^*)^*$$
Other Topics

- Minimizing DFA
 - Hopcroft reduction
- Complementing DFA
- Implementing DFA
Minimizing DFAs

- Every regular language is recognizable by a unique minimum-state DFA
 - Ignoring the particular names of states
- In other words
 - For every DFA, there is a unique DFA with minimum number of states that accepts the same language
Minimizing DFA: Hopcroft Reduction

Intuition

• Look to distinguish states from each other
 ➢ End up in different accept / non-accept state with identical input

Algorithm

• Construct initial partition
 ➢ Accepting & non-accepting states
• Iteratively split partitions (until partitions remain fixed)
 ➢ Split a partition if members in partition have transitions to different partitions for same input
 • Two states x, y belong in same partition if and only if for all symbols in Σ they transition to the same partition
• Update transitions & remove dead states

J. Hopcroft, “An n log n algorithm for minimizing states in a finite automaton,” 1971
Splitting Partitions

- No need to split partition \{S,T,U,V\}
 - All transitions on a lead to identical partition P2
 - Even though transitions on a lead to different states
Splitting Partitions (cont.)

- Need to split partition \(\{S, T, U\} \) into \(\{S, T\}, \{U\} \)
 - Transitions on \(a \) from \(S, T \) lead to partition \(P_2 \)
 - Transition on \(a \) from \(U \) lead to partition \(P_3 \)
Resplitting Partitions

- Need to reexamine partitions after splits
 - Initially no need to split partition \{S,T,U\}
 - After splitting partition \{X,Y\} into \{X\}, \{Y\} we need to split partition \{S,T,U\} into \{S,T\}, \{U\}
Minimizing DFA: Example 1

- DFA

- Initial partitions

- Split partition
Minimizing DFA: Example 1

- **DFA**

- **Initial partitions**
 - Accept \{ R \} = P1
 - Reject \{ S, T \} = P2

- **Split partition? → Not required, minimization done**
 - move(S,a) = T ∈ P2 – move(S,b) = R ∈ P1
 - move(T,a) = T ∈ P2 – move(T,b) = R ∈ P1
Minimizing DFA: Example 2
Minimizing DFA: Example 2

- **DFA**

- **Initial partitions**
 - Accept $\{ R \} = P_1$
 - Reject $\{ S, T \} = P_2$

- **Split partition?** → Yes, different partitions for B
 - $\text{move}(S,a) = T \in P_2$ – $\text{move}(S,b) = T \in P_2$
 - $\text{move}(T,a) = T \in P_2$ – $\text{move}(T,b) = R \in P_1$

DFA already minimal
Minimizing DFA: Example 3
Minimizing DFA: Example 3
Complement of DFA

- Given a DFA accepting language L:
 - How can we create a DFA accepting its complement?
 - Example DFA
 - $\Sigma = \{a, b\}$
Complement of DFA

Algorithm

- Add explicit transitions to a dead state
- Change every accepting state to a non-accepting state & every non-accepting state to an accepting state

Note this only works with DFAs

- Why not with NFAs?
Implementing DFAs (one-off)

It's easy to build a program which mimics a DFA

cur_state = 0;
while (1) {

 symbol = getchar();

 switch (cur_state) {
 case 0: switch (symbol) {
 case '0': cur_state = 0; break;
 case '1': cur_state = 1; break;
 case '\n': printf("rejected\n"); return 0;
 default: printf("rejected\n"); return 0;

 break;
 case 1: switch (symbol) {
 case '0': cur_state = 0; break;
 case '1': cur_state = 1; break;
 case '\n': printf("accepted\n"); return 1;
 default: printf("rejected\n"); return 0;

 break;
 default: printf("unknown state; I'm confused\n");

 break;
 }
 }
}

It's easy to build a program which mimics a DFA.
Implementing DFAs (generic)

More generally, use generic table-driven DFA

given components \((\Sigma, Q, q_0, F, \delta)\) of a DFA:
let \(q = q_0\)
while (there exists another symbol \(s\) of the input string)
 \(q := \delta(q, s);\)
if \(q \in F\) then
 accept
else reject

• \(q\) is just an integer
• Represent \(\delta\) using arrays or hash tables
• Represent \(F\) as a set
Running Time of DFA

- How long for DFA to decide to accept/reject string s?
 - Assume we can compute $\delta(q, c)$ in constant time
 - Then time to process s is $O(|s|)$
 - Can’t get much faster!

- Constructing DFA for RE A may take $O(2^{|A|})$ time
 - But usually not the case in practice

- So there’s the initial overhead
 - But then processing strings is fast
Regular Expressions in Practice

- Regular expressions are typically “compiled” into tables for the generic algorithm
 - Can think of this as a simple byte code interpreter
 - But really just a representation of $(\Sigma, Q_A, q_A, \{f_A\}, \delta_A)$, the components of the DFA produced from the RE

- Regular expression implementations often have extra constructs that are non-regular
 - i.e., can accept more than the regular languages
 - Can be useful in certain cases
 - Disadvantages
 - Nonstandard, plus can have higher complexity
Summary of Regular Expression Theory

- Finite automata
 - DFA, NFA
- Equivalence of RE, NFA, DFA
 - RE → NFA
 - Concatenation, union, closure
 - NFA → DFA
 - ε-closure & subset algorithm
- DFA
 - Minimization, complement
 - Implementation