CMSC 330: Organization of Programming Languages

Parsing
Recall: Front End Scanner and Parser

- **Scanner / lexer / tokenizer** converts program source into **tokens** (keywords, variable names, operators, numbers, etc.) with **regular expressions**
- **Parser** converts tokens into an **AST** (abstract syntax tree) using **context free grammars**
Scanning ("tokenizing")

- Converts textual input into a stream of tokens
 - These are the terminals in the parser’s CFG
 - Example tokens are keywords, identifiers, numbers, punctuation, etc.
- Tokens determined with regular expressions
 - Identifiers match regexp `[a-zA-Z_][a-zA-Z0-9_]`*
- Simplest case: a token is just a string
 - `type token = string`
 - But representation might be more full featured
- Scanner typically ignores/eliminates whitespace
Simple Scanner in OCaml

type token = string

let tokenize (s:string) = ...
 (* returns token list *)
;;

tokenize "this is a string" =
["this"; "is"; "a"; "string"]

let tokenize s =
let l = String.length s in
let rec tok sidx slen =
 if sidx >= l then ("",sidx)
 else if String.get s sidx = ' ' then
 tok (sidx+1) 1
 else if (sidx+slen) >= l then
 (String.sub s sidx slen,1)
 else if String.get s (sidx+slen) = ' ' then
 (String.sub s sidx slen, sidx+slen)
 else
 tok sidx (slen+1) in
let rec alltoks idx =
 let (t,idx') = tok idx 1 in
 if t = "" then []
 else t::alltoks idx' in
alltoks 0
type token =
 Tok_Num of char
 | Tok_Sum
 | Tok_END

let tokenize (s:string) = …
 (* returns token list *)
;;

let re_num = Str.regexp "[0-9]" (* single digit *)
let re_add = Str.regexp "+"
let tokenize str =
 let rec tok pos s =
 if pos >= String.length s then
 [Tok_END]
 else
 let token = Str.matched_string s in
 (Tok_Num token.[0])::(tok (pos+1) s)
 else if (Str.string_match re_num s pos) then
 (Tok_Num (tok (pos+1) s))::(tok (pos+1) s)
 else if (Str.string_match re_add s pos) then
 Tok_Sum::(tok (pos+1) s)
 else
 raise (IllegalExpression "tokenize")
 in
 tok 0 str

tokenize "1+2" =
 [Tok_Num '1';
 Tok_Sum;
 Tok_Num '2';
 Tok_END]

Uses Str library module for regexps
Implementing Parsers

Many efficient techniques for parsing
 • I.e., for turning strings into parse trees
 • Examples
 ➢ LL(k), SLR(k), LR(k), LALR(k)…
 ➢ Take CMSC 430 for more details

One simple technique: recursive descent parsing
 • This is a top-down parsing algorithm
 • Other algorithms are bottom-up
Top-Down Parsing

E → id = n | { L }
L → E ; L | ε

(Assume: id is variable name, n is integer)

Show parse tree for
{x = 3 ; { y = 4 ; } ; }
Bottom-up Parsing

E → id = n | { L }
L → E ; L | ε

Show parse tree for
{ x = 3 ; { y = 4 ; } ; }

Note that final trees constructed are same as for top-down; only order in which nodes are added to tree is different
Example: Shift-Reduce Parsing

- Replaces RHS of production with LHS (nonterminal)

- Example grammar
 - $S \rightarrow aA$, $A \rightarrow Bc$, $B \rightarrow b$

- Example parse
 - $abc \Rightarrow aBc \Rightarrow aA \Rightarrow S$
 - Derivation happens in reverse

- Something to look forward to in CMSC 430

- Complicated to use; requires tool support
 - *Bison, yacc* produce shift-reduce parsers from CFGs
Tradeoffs

- Recursive descent parsers
 - Easy to write
 - The formal definition is a little clunky, but if you follow the code then it’s almost what you might have done if you weren't told about grammars formally
 - Fast
 - Can be implemented with a simple table
- Shift-reduce parsers handle more grammars
 - Error messages may be confusing
- Most languages use hacked parsers (!)
 - Strange combination of the two
Recursive Descent Parsing

- **Goal**
 - Determine if we can produce the string to be parsed from the grammar's start symbol

- **Approach**
 - Recursively replace nonterminal with RHS of production

- **At each step, we'll keep track of two facts**
 - What tree node are we trying to match?
 - What is the lookahead (next token of the input string)?
 - Helps guide selection of production used to replace nonterminal
Recursive Descent Parsing (cont.)

At each step, 3 possible cases

- If we’re trying to match a terminal
 - If the lookahead is that token, then succeed, advance the lookahead, and continue
- If we’re trying to match a nonterminal
 - Pick which production to apply based on the lookahead
- Otherwise fail with a parsing error
Parsing Example

\[E \rightarrow \text{id} = n \mid \{ L \} \]
\[L \rightarrow E \; ; \; L \mid \epsilon \]

- Here \(n \) is an integer and \(\text{id} \) is an identifier

- **One input might be**
 - \(\{ x = 3; \{ y = 4; \}; \} \)
 - This would get turned into a list of tokens
 \[\{ x = 3 ; \{ y = 4 ; \} ; \} \]
 - And we want to turn it into a parse tree
Parsing Example (cont.)

\[E \rightarrow \text{id} = n \mid \{ L \} \]
\[L \rightarrow E ; L \mid \varepsilon \]

\{ x = 3 ; \{ y = 4 ; \} ; \}

Lookahead
Recursive Descent Parsing (cont.)

- Key step
 - Choosing which production should be selected

- Two approaches
 - Backtracking
 - Choose some production
 - If fails, try different production
 - Parse fails if all choices fail
 - Predictive parsing
 - Analyze grammar to find FIRST sets for productions
 - Compare with lookahead to decide which production to select
 - Parse fails if lookahead does not match FIRST
First Sets

- Motivating example
 - The lookahead is \(x \)
 - Given grammar \(S \rightarrow xyz \mid abc \)
 - Select \(S \rightarrow xyz \) since 1st terminal in RHS matches \(x \)
 - Given grammar \(S \rightarrow A \mid B \quad A \rightarrow x \mid y \quad B \rightarrow z \)
 - Select \(S \rightarrow A \), since \(A \) can derive string beginning with \(x \)

- In general
 - Choose a production that can derive a sentential form beginning with the lookahead
 - Need to know what terminal may be first in any sentential form derived from a nonterminal / production
First Sets

» Definition

- \textbf{First}(\gamma), for any terminal or nonterminal \gamma, is the set of initial terminals of all strings that \gamma may expand to
- We’ll use this to decide what production to apply

» Examples

- Given grammar \(S \rightarrow \text{xyz} \mid \text{abc} \)
 - \text{First(xyz)} = \{ x \}, \text{First(abc)} = \{ a \}
 - \text{First}(S) = \text{First(xyz)} \cup \text{First(abc)} = \{ x, a \}

- Given grammar \(S \rightarrow A \mid B \quad A \rightarrow x \mid y \quad B \rightarrow z \)
 - \text{First(x)} = \{ x \}, \text{First(y)} = \{ y \}, \text{First(A)} = \{ x, y \}
 - \text{First(z)} = \{ z \}, \text{First(B)} = \{ z \}
 - \text{First}(S) = \{ x, y, z \}
Calculating First(γ)

- For a terminal \(a \)
 - \(\text{First}(a) = \{ a \} \)

- For a nonterminal \(N \)
 - If \(N \rightarrow ε \), then add \(ε \) to First(\(N \))
 - If \(N \rightarrow α_1 α_2 \ldots α_n \), then (note the \(α_i \) are all the symbols on the right side of one single production):
 - Add First(\(α_1 α_2 \ldots α_n \)) to First(\(N \)), where First(\(α_1 α_2 \ldots α_n \)) is defined as
 - First(\(α_1 \)) if \(ε \notin \text{First}(α_1) \)
 - Otherwise \((\text{First}(α_1) – ε) \cup \text{First}(α_2 \ldots α_n) \)
 - If \(ε \in \text{First}(α_i) \) for all \(i, 1 ≤ i ≤ k \), then add \(ε \) to First(\(N \))
First() Examples

\[E \rightarrow id = n \mid \{ \ L \} \]
\[L \rightarrow E ; L \mid \varepsilon \]

- First(id) = \{ id \}
- First("=") = \{ "=" \}
- First(n) = \{ n \}
- First("\{") = \{ "\{" \}
- First("\}") = \{ "\}" \}
- First(";") = \{ ";" \}
- First(E) = \{ id, "\{" \}
- First(L) = \{ id, "\{", \varepsilon \}

\[E \rightarrow id = n \mid \{ \ L \} \mid \varepsilon \]
\[L \rightarrow E ; L \]

- First(id) = \{ id \}
- First("=") = \{ "=" \}
- First(n) = \{ n \}
- First("\{") = \{ "\{" \}
- First("\}") = \{ "\}" \}
- First(";") = \{ ";" \}
- First(E) = \{ id, "\{", \varepsilon \}
- First(L) = \{ id, "\{", ";" \}
Quiz #1

Given the following grammar:

What is First(S)?

A. \{a\}
B. \{b, c\}
C. \{b\}
D. \{c\}
Quiz #1

Given the following grammar:

\[
\begin{align*}
S & \rightarrow aAB \\
A & \rightarrow CBC \\
B & \rightarrow b \\
C & \rightarrow cC \mid \epsilon
\end{align*}
\]

What is First(S)?

A. \{a\}
B. \{b, c\}
C. \{b\}
D. \{c\}
Quiz #2

Given the following grammar:

What is First(B)?

A. \{a\}
B. \{b, c\}
C. \{b\}
D. \{c\}
Quiz #2

Given the following grammar:

What is First(B)?

A. \{a\}
B. \{b, c\}
C. \{b\}
D. \{c\}

S \rightarrow aAB
A \rightarrow CBC
B \rightarrow b
C \rightarrow cC \mid \varepsilon
Quiz #3

Given the following grammar:

What is First(A)?

A. {a}
B. {b, c}
C. {b}
D. {c}
Given the following grammar:

\[
S \rightarrow aAB \\
A \rightarrow CBC \\
B \rightarrow b \\
C \rightarrow cC \mid \varepsilon
\]

What is \textit{First}(A)?

A. \{a\}
B. \{b, c\}
C. \{b\}
D. \{c\}
Recursive Descent Parser Implementation

- For all terminals, use function `match_tok a`
 - If lookahead is `a` it consumes the lookahead by advancing the lookahead to the next token, and returns
 - Fails with a parse error if lookahead is not `a`

- For each nonterminal `N`, create a function `parse_N`
 - Called when we’re trying to parse a part of the input which corresponds to (or can be derived from) `N`
 - `parse_S` for the start symbol `S` begins the parse
match_tok in OCaml

let tok_list = ref [] (* list of parsed tokens *)

exception ParseError of string

let match_tok a =
 match !tok_list with
 (* checks lookahead; advances on match *)
 | (h::t) when a = h -> tok_list := t
 | _ -> raise (ParseError "bad match")

(* used by parse_X *)
let lookahead () =
 match !tok_list with
 [] -> raise (ParseError "no tokens")
 | (h::t) -> h
Parsing Nonterminals

The body of `parse_N` for a nonterminal `N` does the following:

- Let `N \rightarrow \beta_1 \mid \ldots \mid \beta_k` be the productions of `N`:
 - Here `\beta_i` is the entire right side of a production - a sequence of terminals and nonterminals.
- Pick the production `N \rightarrow \beta_i` such that the lookahead is in `First(\beta_i)`:
 - It must be that `First(\beta_i) \cap First(\beta_j) = \emptyset` for `i \neq j`.
 - If there is no such production, but `N \rightarrow \epsilon` then return.
 - Otherwise fail with a parse error.
- Suppose `\beta_i = \alpha_1 \alpha_2 \ldots \alpha_n`. Then call `parse_\alpha_1(); \ldots ; parse_\alpha_n()` to match the expected right-hand side, and return.
Example Parser

- Given grammar $S \rightarrow xyz \mid abc$
 - $\text{First}(xyz) = \{ x \}$, $\text{First}(abc) = \{ a \}$

- Parser

  ```
  let parse_S () =
  if lookahead () = "x" then (* $S \rightarrow xyz$ *)
  (match_tok "x";
   match_tok "y";
   match_tok "z")
  else if lookahead () = "a" then (* $S \rightarrow abc$ *)
  (match_tok "a";
   match_tok "b";
   match_tok "c")
  else raise (ParseError "parse_S")
  ```
Another Example Parser

- Given grammar \(S \rightarrow A | B \quad A \rightarrow x \mid y \quad B \rightarrow z \)
 - First(A) = \{ x, y \}, First(B) = \{ z \}

- Parser:
  ```
  let rec parse_S () =
  if lookahead () = "x" || lookahead () = "y" then
    parse_A () (* S \rightarrow A *)
  else if lookahead () = "z" then
    parse_B () (* S \rightarrow B *)
  else raise (ParseError "parse_S")
  
  and parse_A () =
  if lookahead () = "x" then
    match_tok "x" (* A \rightarrow x *)
  else if lookahead () = "y" then
    match_tok "y" (* A \rightarrow y *)
  else raise (ParseError "parse_A")
  
  and parse_B () = ...
  ```
Example

\[E \rightarrow id = n \mid \{ \ L \} \]

\[L \rightarrow E ; L \mid \varepsilon \]

First(E) = \{ id, "{" \}

Parser:

let rec parse_E () =
 if lookahead () = "id" then
 (* E \rightarrow id = n *)
 (match_tok "id";
 match_tok "; =";
 match_tok "n")
 else if lookahead () = "{" then
 (* E \rightarrow \{ L \} *)
 (match_tok "{";
 parse_L ();
 match_tok "}")
 else raise (ParseError "parse_A")

and parse_L () =
 if lookahead () = "id"
 || lookahead () = "{" then
 (* L \rightarrow E ; L *)
 (parse_E ()
 match_tok ";";
 parse_L ()
 else
 (* L \rightarrow \varepsilon *)
 ()
Things to Notice

- If you draw the execution trace of the parser
 - You get the parse tree

Examples

- Grammar
 \[S \rightarrow xyz \]
 \[S \rightarrow abc \]

- String “xyz”
 \[
 \begin{align*}
 \text{parse}_S () & \rightarrow S \\
 \text{match}_\text{tok} \text{ “x”} & \rightarrow / \| \backslash \\
 \text{match}_\text{tok} \text{ “y”} & \rightarrow x y z \\
 \text{match}_\text{tok} \text{ “z”} & \\
 \end{align*}
 \]

- Grammar
 \[S \rightarrow A | B \]
 \[A \rightarrow x | y \]
 \[B \rightarrow z \]

- String “x”
 \[
 \begin{align*}
 \text{parse}_S () & \rightarrow S \\
 \text{parse}_A () & \\
 \text{match}_\text{tok} \text{ “x”} & \rightarrow x \\
 \end{align*}
 \]
Things to Notice (cont.)

- This is a **predictive** parser
 - Because the lookahead determines exactly which production to use
- This parsing strategy may fail on some grammars
 - Production First sets overlap
 - Production First sets contain ϵ
 - Possible infinite recursion
- Does not mean grammar is not usable
 - Just means this parsing method not powerful enough
 - May be able to change grammar
Conflicting First Sets

Consider parsing the grammar $E \rightarrow ab \mid ac$

- $\text{First}(ab) = a$
- $\text{First}(ac) = a$

Parser cannot choose between $A \rightarrow \alpha_1 \mid \alpha_2$ and

- $\text{First}(\alpha_1) \cap \text{First}(\alpha_2) \neq \varepsilon$ or \emptyset

Solution

- Rewrite grammar using left factoring
Left Factoring Algorithm

► Given grammar
 • $A \rightarrow x\alpha_1 \mid x\alpha_2 \mid \ldots \mid x\alpha_n \mid \beta$

► Rewrite grammar as
 • $A \rightarrow xL \mid \beta$
 • $L \rightarrow \alpha_1 \mid \alpha_2 \mid \ldots \mid \alpha_n$

► Repeat as necessary

► Examples
 • $S \rightarrow ab \mid ac \rightarrow S \rightarrow aL \quad L \rightarrow b \mid c$
 • $S \rightarrow abcA \mid abB \mid a \rightarrow S \rightarrow aL \quad L \rightarrow bcA \mid bB \mid \epsilon$
 • $L \rightarrow bcA \mid bB \mid \epsilon \rightarrow L \rightarrow bL' \mid \epsilon \quad L' \rightarrow cA \mid B$
Alternative Approach

- Change structure of parser
 - First match common prefix of productions
 - Then use lookahead to chose between productions

Example

- Consider parsing the grammar $E \rightarrow a+b \mid a*b \mid a$

```plaintext
let parse_E () =
  match_tok "a"; (* common prefix *)
  if lookahead () = "+" then (* E → a+b *)
    (match_tok "+";
     match_tok "b")
  else if lookahead () = "*" then (* E → a*b *)
    (match_tok "*";
     match_tok "b")
  else () (* E → a *)
```
Left Recursion

Consider grammar $S \rightarrow Sa \mid \varepsilon$

- Try writing parser

```ml
let rec parse_S () =
  if lookahead () = "a" then
    (parse_S ();
     match_tok "a") (* S → Sa *)
  else ()
```

- Body of `parse_S ()` has an infinite loop!
 - Infinite loop occurs in grammar with left recursion
Right Recursion

Consider grammar $S \to aS \mid \varepsilon$

- Try writing parser

```ocaml
let rec parse_S () =
    if lookahead () = "a" then
      (match_tok "a";
       parse_S ()) (* S → aS *)
    else ()
```

- Will `parse_S()` infinite loop?
 - Invoking `match_tok` will advance lookahead, eventually stop
- Top down parsers handles grammar w/ right recursion
Algorithm To Eliminate Left Recursion

- Given grammar
 - $A \rightarrow A\alpha_1 \mid A\alpha_2 \mid \ldots \mid A\alpha_n \mid \beta$
 - β must exist or derivation will not yield string
- Rewrite grammar as (repeat as needed)
 - $A \rightarrow \beta L$
 - $L \rightarrow \alpha_1 L \mid \alpha_2 L \mid \ldots \mid \alpha_n L \mid \epsilon$
- Replaces left recursion with right recursion
- Examples
 - $S \rightarrow Sa \mid \epsilon \quad \Rightarrow \quad S \rightarrow L \quad L \rightarrow aL \mid \epsilon$
 - $S \rightarrow Sa \mid Sb \mid c \quad \Rightarrow \quad S \rightarrow cL \quad L \rightarrow aL \mid bL \mid \epsilon$
Quiz #4

- What Does the following code parse?

```plaintext
let parse_S () =
    if lookahead () = "a" then
        (match_tok "a";
         match_tok "x";
         match_tok "y")
    else if lookahead () = "q" then
        match_tok "q"
    else
        raise (ParseError "parse_S")
```

A. S -> axyq
B. S -> a | q
C. S -> aaxy | qq
D. S -> axy | q
Quiz #4

What Does the following code parse?

let parse_S () =
 if lookahead () = "a" then
 (match_tok "a";
 match_tok "x";
 match_tok "y")
 else if lookahead () = "q" then
 match_tok "q"
 else
 raise (ParseError "parse_S")

A. S -> axyq
B. S -> a | q
C. S -> aaxy | qq
D. S -> axy | q
Quiz #5

What Does the following code parse?

```ocaml
let rec parse_S () =
  if lookahead () = "a" then
    (match_tok "a"; parse_S ())
  else if lookahead () = "q" then
    (match_tok "q"; match_tok "p")
  else
    raise (ParseError "parse_S")
```

A. S -> aS | qp
B. S -> a | S | qp
C. S -> aqSp
D. S -> a | q
Quiz #5

What Does the following code parse?

```
let rec parse_S () =
  if lookahead () = "a" then
    (match_tok "a";
     parse_S ()
  )
else if lookahead () = "q" then
  (match_tok "q";
   match_tok "p")
else
  raise (ParseError "parse_S")
```

A. S -> aS | qp
B. S -> a | S | qp
C. S -> aqSp
D. S -> a | q
Can recursive descent parse this grammar?

S -> aBa
B -> bC
C -> ε | Cc

A. Yes
B. No
Quiz #6

Can recursive descent parse this grammar?

\[
\begin{align*}
S & \rightarrow aBa \\
B & \rightarrow bC \\
C & \rightarrow \varepsilon \mid Cc \\
\end{align*}
\]

A. Yes
B. No
(due to left recursion)
What’s Wrong With Parse Trees?

- Parse trees contain too much information
 - Example
 - Parentheses
 - Extra nonterminals for precedence
 - This extra stuff is needed for parsing

- But when we want to **reason** about languages
 - Extra information gets in the way (too much detail)
Abstract Syntax Trees (ASTs)

- An abstract syntax tree is a more compact, abstract representation of a parse tree, with only the essential parts.
Abstract Syntax Trees (cont.)

- Intuitively, ASTs correspond to the data structure you’d use to represent strings in the language
 - Note that grammars describe trees
 - So do OCaml datatypes, as we have seen already
 - \[E \rightarrow a \mid b \mid c \mid E+E \mid E-E \mid E^*E \mid (E) \]
Producing an AST

To produce an AST, we can modify the `parse()` functions to construct the AST along the way

- `match_tok a` returns an AST node (leaf) for `a`
- `parse_A` returns an AST node for `A`
 - AST nodes for RHS of production become children of LHS node

Example

- `S → aA`

```
let rec parse_S () =
    if lookahead () = "a" then
        let n1 = match_tok "a" in
        let n2 = parse_A () in
        Node(n1,n2)
    else raise ParseError "parse_S"
```

```
S
/ \
a  A
```

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

```
The Compilation Process

source program → Compiler → target program

Lexing

regexps DFAs

Parsing

CFGs PDAs

AST

Intermediate Code Generation

Optimization

(may not actually be constructed)