CMSC 330: Organization of Programming Languages

Operational Semantics
Formal Semantics of a Prog. Lang.

- Mathematical description of the meaning of programs written in that language
 - What a program computes, and what it does

- Three main approaches to formal semantics
 - Denotational
 - Operational
 - Axiomatic
Styles of Semantics

- **Denotational semantics**: translate programs into math!
 - Usually: convert programs into functions mapping inputs to outputs
 - Analogous to compilation
- **Operational semantics**: define how programs execute
 - Often on an abstract machine (mathematical model of computer)
 - Analogous to interpretation
- **Axiomatic semantics**
 - Describe programs as predicate transformers, i.e. for converting initial assumptions into guaranteed properties after execution
 - Preconditions: assumed properties of initial states
 - Postcondition: guaranteed properties of final states
 - Logical rules describe how to systematically build up these transformers from programs
This Course: Operational Semantics

- We will show how an operational semantics may be defined for Micro-Ocaml
 - And develop an interpreter for it, along the way

- Approach: use rules to define a judgment

 \[e \Rightarrow v \]

 - Says “\(e \) evaluates to \(v \)”
 - \(e \): expression in Micro-OCaml
 - \(v \): value that results from evaluating \(e \)
Definitional Interpreter

- It turns out that the rules for judgment $e \Rightarrow v$ can be easily turned into idiomatic OCaml code
 - The language’s expressions e and values v have corresponding OCaml datatype representations exp and value
 - The semantics is represented as a function

 $$\text{eval}: \text{exp} \rightarrow \text{value}$$

- This way of presenting the semantics is referred to as a definitional interpreter
 - The interpreter defines the language’s meaning
Micro-OCaml Expression Grammar

\[e ::= x | n | e + e | \text{let } x = e \text{ in } e \]

- \(e, x, n\) are *meta-variables* that stand for categories of syntax
 - \(x\) is any identifier (like \(z, y, \text{foo}\))
 - \(n\) is any numeral (like \(1, 0, 10, -25\))
 - \(e\) is any expression (here defined, recursively!)

Concrete syntax of actual expressions in **black**
- Such as \(\text{let}, +, z, \text{foo}, \text{in}, \text{…}\)

• ::= and | are *meta-syntax* used to define the syntax of a language (part of “Backus-Naur form,” or BNF)
Micro-OCaml Expression Grammar

\[e ::= x \mid n \mid e + e \mid \text{let } x = e \text{ in } e \]

Examples

- 1 is a numeral \(n \) which is an expression \(e \)
- 1+z is an expression \(e \) because
 - 1 is an expression \(e \),
 - \(z \) is an identifier \(x \), which is an expression \(e \), and
 - \(e + e \) is an expression \(e \)
- let \(z = 1 \) in 1+z is an expression \(e \) because
 - \(z \) is an identifier \(x \),
 - 1 is an expression \(e \),
 - 1+z is an expression \(e \), and
 - let \(x = e \) in \(e \) is an expression \(e \)
Abstract Syntax = Structure

Here, the grammar for e is describing its abstract syntax tree (AST), i.e., e’s structure

$$e ::= x \mid n \mid e + e \mid \text{let } x = e \text{ in } e$$

corresponds to (in defn interpreter)

```plaintext
type id = string
type num = int
type exp =
    | Ident of id
    | Num of num
    | Plus of exp * exp
    | Let of id * exp * exp
```
The parsing problem is how to convert program text into an AST, i.e., a value of the type below

- We defer worrying about this problem until later
 - Hint: Relates to using something like regular expressions to read in text and construct values like the following from it

```plaintext
type id = string
type num = int
type exp =
  | Ident of id
  | Num of num
  | Plus of exp * exp
  | Let of id * exp * exp
```
Values

- An expression’s final result is a value. What can values be?

\[v ::= n \]

- Just numerals for now
 - In terms of an interpreter’s representation:
 \[\text{type } \text{value} = \text{int} \]
 - In a full language, values \(v \) will also include booleans (\text{true}, \text{false}), strings, functions, …
Defining the Semantics

- Use rules to define judgment $e \Rightarrow v$

- These rules will allow us to show things like
 - $1+3 \Rightarrow 4$
 - $1+3$ is an expression e, and 4 is a value v
 - This judgment claims that $1+3$ evaluates to 4
 - We use rules to prove it to be true
 - let $foo=1+2$ in $foo+5 \Rightarrow 8$
 - let $f=1+2$ in let $z=1$ in $f+z \Rightarrow 4$
Rules as English Text

- Suppose e is a numeral n
 - Then e evaluates to itself, i.e., $n \Rightarrow n$

- Suppose e is an addition expression $e_1 + e_2$
 - If e_1 evaluates to n_1, i.e., $e_1 \Rightarrow n_1$
 - If e_2 evaluates to n_2, i.e., $e_2 \Rightarrow n_2$
 - Then e evaluates to n_3, where n_3 is the sum of n_1 and n_2
 - I.e., $e_1 + e_2 \Rightarrow n_3$

- Suppose e is a let expression $\text{let } x = e_1 \text{ in } e_2$
 - If e_1 evaluates to v, i.e., $e_1 \Rightarrow v_1$
 - If $e_2\{v_1/x\}$ evaluates to v_2, i.e., $e_2\{v_1/x\} \Rightarrow v_2$
 - Here, $e_2\{v_1/x\}$ means “the expression after substituting occurrences of x in e_2 with v_1”
 - Then e evaluates to v_2, i.e., $\text{let } x = e_1 \text{ in } e_2 \Rightarrow v_2$
Rules of Inference

- We can use a more compact notation for the rules we just presented:
 rules of inference

 - Has the following format

 \[
 \begin{array}{c}
 H_1 \quad \ldots \quad H_n \\
 \hline
 C
 \end{array}
 \]

 - Says: if the conditions \(H_1 \quad \ldots \quad H_n \) ("hypotheses") are true, then the condition \(C \) ("conclusion") is true
 - If \(n=0 \) (no hypotheses) then the conclusion automatically holds; this is called an axiom

- We will use inference rules to speak about evaluation
Rules of Inference: Num and Sum

- Suppose e is a numeral n
 - Then e evaluates to itself, i.e., $n \Rightarrow n$

- Suppose e is an addition expression $e_1 + e_2$
 - If e_1 evaluates to n_1, i.e., $e_1 \Rightarrow n_1$
 - If e_2 evaluates to n_2, i.e., $e_2 \Rightarrow n_2$
 - Then e evaluates to n_3, where n_3 is the sum of n_1 and n_2
 - I.e., $e_1 + e_2 \Rightarrow n_3$

\[
\begin{align*}
e_1 \Rightarrow n_1 & \quad e_2 \Rightarrow n_2 & \quad n_3 \text{ is } n_1 + n_2 \\
\hline
e_1 + e_2 \Rightarrow n_3
\end{align*}
\]
Rules of Inference: Let

- Suppose e is a let expression $\text{let } x = e_1 \text{ in } e_2$
 - If e_1 evaluates to v, i.e., $e_1 \Rightarrow v_1$
 - If $e_2\{v_1/x\}$ evaluates to v_2, i.e., $e_2\{v_1/x\} \Rightarrow v_2$
 - Then e evaluates to v_2, i.e., $\text{let } x = e_1 \text{ in } e_2 \Rightarrow v_2$

\[
\begin{array}{c c c}
e_1 \Rightarrow v_1 & e_2\{v_1/x\} \Rightarrow v_2 \\
\text{let } x = e_1 \text{ in } e_2 \Rightarrow v_2
\end{array}
\]
Derivations

- When we apply rules to an expression in succession, we produce a derivation
 - It’s a kind of tree, rooted at the conclusion

- Produce a derivation by goal-directed search
 - Pick a rule that could prove the goal
 - Then repeatedly apply rules on the corresponding hypotheses

 ➢ Goal: Show that let x = 4 in x+3 ⇒ 7
Derivations

\[
\text{let } x = 4 \text{ in } x + 3 \Rightarrow 4
\]

\[
\Rightarrow x + 3\{x/4\} \Rightarrow 3
\]

\[
\Rightarrow 4 \Rightarrow 7
\]

\[
\text{Goal: show that}
\]

\[
\text{let } x = 4 \text{ in } x + 3 \Rightarrow 7
\]

\[
4 \Rightarrow 4 \quad 3 \Rightarrow 3 \quad 7 \text{ is } 4 + 3
\]

\[
4 \Rightarrow 4 \quad 4 + 3 \Rightarrow 7
\]

\[
\text{let } x = 4 \text{ in } x + 3 \Rightarrow 7
\]
Quiz 1

What is derivation of the following judgment?

\[2 + (3 + 8) \Rightarrow 13 \]

(a)

\[
\begin{align*}
2 \Rightarrow 2 & \quad 3 + 8 \Rightarrow 11 \\
\hline
2 + (3 + 8) & \Rightarrow 13
\end{align*}
\]

(b)

\[
\begin{align*}
3 \Rightarrow 3 & \quad 8 \Rightarrow 8 \\
\hline
3 + 8 & \Rightarrow 11 \\
\hline
2 + (3 + 8) & \Rightarrow 13
\end{align*}
\]

(c)

\[
\begin{align*}
8 \Rightarrow 8 \\
3 \Rightarrow 3 \\
11 \text{ is } 3+8 \\
\hline
2 \Rightarrow 2 & \quad 3 + 8 \Rightarrow 11 \\
\hline
13 \text{ is } 2+11 \\
\hline
2 + (3 + 8) & \Rightarrow 13
\end{align*}
\]
Quiz 1

What is derivation of the following judgment?

\[2 + (3 + 8) \Rightarrow 13 \]

(a)
\[
\begin{align*}
2 & \Rightarrow 2 \\
3 + 8 & \Rightarrow 11 \\
\hline
2 + (3 + 8) & \Rightarrow 13
\end{align*}
\]

(b)
\[
\begin{align*}
3 & \Rightarrow 3 \\
8 & \Rightarrow 8 \\
\hline
3 + 8 & \Rightarrow 11 \\
2 & \Rightarrow 2 \\
\hline
2 + (3 + 8) & \Rightarrow 13
\end{align*}
\]

(c)
\[
\begin{align*}
8 & \Rightarrow 8 \\
3 & \Rightarrow 3 \\
11 & \text{is } 3+8 \\
\hline
2 & \Rightarrow 2 \\
3 + 8 & \Rightarrow 11 \\
13 & \text{is } 2+11 \\
\hline
2 + (3 + 8) & \Rightarrow 13
\end{align*}
\]
The style of rules lends itself directly to the implementation of an interpreter as a recursive function.

``` Ocaml
let rec eval (e:exp):value = match e with
  | Ident x -> (* no rule *) failwith "no value"
  | Num n -> n
  | Plus (e1,e2) ->
    let n1 = eval e1 in
    let n2 = eval e2 in
    let n3 = n1+n2 in n3
  | Let (x,e1,e2) ->
    let v1 = eval e1 in
    let e2’ = subst v1 x e2 in
    let v2 = eval e2’ in v2
```

Trace of evaluation of `eval` function corresponds to a derivation by the rules:

- `e1 ⇒ n1` `e2 ⇒ n2` `n3` is `n1+n2`
- `e1 + e2 ⇒ n3`
- `e1 ⇒ v1` `e2{v1/x} ⇒ v2`
- `let x = e1 in e2 ⇒ v2`
Derivations = Interpreter Call Trees

\[
\begin{align*}
4 \Rightarrow 4 & \quad 3 \Rightarrow 3 & \quad 7 \text{ is } 4+3 \\
4 \Rightarrow 4 & \quad 4+3 \Rightarrow 7 \\
\text{let } x = 4 \text{ in } x+3 \Rightarrow 7
\end{align*}
\]

Has the same shape as the recursive call tree of the interpreter:

\[
\begin{align*}
\text{eval } \text{Num } 4 \Rightarrow 4 & \quad \text{eval } \text{Num } 3 \Rightarrow 3 & \quad 7 \text{ is } 4+3 \\
\text{eval } (\text{subst } 4 \text{ “}x\text{”}) & \\
\text{eval } \text{Num } 4 \Rightarrow 4 & \quad \text{Plus}(\text{Ident}(\text{“}x\text{”}), \text{Num } 3) \Rightarrow 7 \\
\text{eval } \text{Let}(\text{“}x\text{”}, \text{Num } 4, \text{Plus}(\text{Ident}(\text{“}x\text{”}), \text{Num } 3)) \Rightarrow 7
\end{align*}
\]
Semantics Defines Program Meaning

- $e \Rightarrow v$ holds if and only if a *proof* can be built
 - Proofs are derivations: axioms at the top, then rules whose hypotheses have been proved to the bottom
 - No proof means $e \not\Rightarrow v$

- Proofs can be constructed bottom-up
 - In a goal-directed fashion

- Thus, function $\text{eval} \ e = \{v \mid e \Rightarrow v\}$
 - Determinism of semantics implies at most one element for any e

- So: Expression e means v
Environment-style Semantics

- The previous semantics uses substitution to handle variables
 - As we evaluate, we replace all occurrences of a variable x with values it is bound to

- An alternative semantics, closer to a real implementation, is to use an environment
 - As we evaluate, we maintain an explicit map from variables to values, and look up variables as we see them
Environments

- Mathematically, an environment is a partial function from identifiers to values
 - If A is an environment, and x is an identifier, then $A(x)$ can either be …
 - … a value (intuition: the variable has been declared)
 - … or undefined (intuition: variable has not been declared)

- An environment can also be thought of as a table
 - If A is

Id	Val
x	0
y	2

 - then $A(x)$ is 0, $A(y)$ is 2, and $A(z)$ is undefined
Notation, Operations on Environments

- \(\bullet \) is the empty environment (undefined for all ids)
- \(x:v \) is the environment that maps \(x \) to \(v \) and is undefined for all other ids
- If \(A \) and \(A' \) are environments then \(A, A' \) is the environment defined as follows
 \[
 (A, A')(x) = \begin{cases}
 A'(x) & \text{if } A'(x) \text{ defined} \\
 A(x) & \text{if } A'(x) \text{ undefined but } A(x) \text{ defined} \\
 \text{undefined} & \text{otherwise}
 \end{cases}
 \]
- So: \(A' \) *shadows* definitions in \(A \)
- For brevity, can write \(\bullet, A \) as just \(A \)
Semantics with Environments

The environment semantics changes the judgment

\[e \Rightarrow v \]

to be

\[A; e \Rightarrow v \]

where \(A \) is an environment

- Idea: \(A \) is used to give values to the identifiers in \(e \)
- \(A \) can be thought of as containing declarations made up to \(e \)

Previous rules can be modified by

- Inserting \(A \) everywhere in the judgments
- Adding a rule to look up variables \(x \) in \(A \)
- Modifying the rule for \texttt{let} to add \(x \) to \(A \)
Environment-style Rules

\[A(x) = v \]

\[A; x \Rightarrow v \]

Look up variable \(x \) in environment \(A \)

\[A; n \Rightarrow n \]

Extend environment \(A \) with mapping from \(x \) to \(v_1 \)

\[A; e_1 \Rightarrow v_1 \quad A, x : v_1; e_2 \Rightarrow v_2 \]

\[A; \text{let } x = e_1 \text{ in } e_2 \Rightarrow v_2 \]

\[A; e_1 \Rightarrow n_1 \quad A; e_2 \Rightarrow n_2 \quad n_3 \text{ is } n_1 + n_2 \]

\[A; e_1 + e_2 \Rightarrow n_3 \]
Quiz 2

What is a derivation of the following judgment?

•; let x=3 in x+2 ⇒ 5

(a)

\[
\begin{align*}
x & \Rightarrow 3 \\
2 & \Rightarrow 2 \\
5 & \text{is} \ 3+2 \\
\hline
3 & \Rightarrow 3 \\
x+2 & \Rightarrow 5 \\
\hline
\text{let x=3 in x+2} & \Rightarrow 5
\end{align*}
\]

(b)

\[
\begin{align*}
x:3; \ x & \Rightarrow 3 \\
x:3; \ 2 & \Rightarrow 2 \\
5 & \text{is} \ 3+2 \\
\hline
•; 3 & \Rightarrow 3 \\
\hline
•; \ let \ x=3 \ in \ x+2 & \Rightarrow 5
\end{align*}
\]

(c)

\[
\begin{align*}
x:2; \ x & \Rightarrow 3 \\
x:2; \ 2 & \Rightarrow 2 \\
5 & \text{is} \ 3+2 \\
\hline
•; \ let \ x=3 \ in \ x+2 & \Rightarrow 5
\end{align*}
\]
Quiz 2

What is a derivation of the following judgment?

•; let x=3 in x+2 ⇒ 5

(a)
\[x \Rightarrow 3 \quad 2 \Rightarrow 2 \quad 5 \text{ is } 3+2\]

\[3 \Rightarrow 3 \quad x+2 \Rightarrow 5\]

let x=3 in x+2 ⇒ 5

(b)
\[x:3; x \Rightarrow 3 \quad x:3; 2 \Rightarrow 2 \quad 5 \text{ is } 3+2\]

•; 3 ⇒ 3 \quad x:3; x+2 ⇒ 5

•; let x=3 in x+2 ⇒ 5

(c)
\[x:2; x \Rightarrow 3 \quad x:2; 2 \Rightarrow 2 \quad 5 \text{ is } 3+2\]

•; let x=3 in x+2 ⇒ 5
type env = (id * value) list

let extend env x v = (x,v)::env

let rec lookup env x =
 match env with
 | [] -> failwith "no var"
 | (y,v)::env' ->
 if x = y then v
 else lookup env' x
let rec eval env e =
 match e with
 | Ident x -> lookup env x
 | Num n -> n
 | Plus (e1,e2) ->
 let n1 = eval env e1 in
 let n2 = eval env e2 in
 let n3 = n1+n2 in
 n3
 | Let (x,e1,e2) ->
 let v1 = eval env e1 in
 let env' = extend env x v1 in
 let v2 = eval env' e2 in v2
Adding Conditionals to Micro-OCaml

\[
e ::= x | v | e + e | \text{let } x = e \text{ in } e
\]
\[
| \text{eq0 } e | \text{if } e \text{ then } e \text{ else } e
\]

\[
v ::= n | \text{true} | \text{false}
\]

- In terms of interpreter definitions:

```ocaml
type exp =
  | Val of value
  | ... (* as before *)
  | Eq0 of exp
  | If of exp * exp * exp

type value =
  | Int of int
  | Bool of bool
```
Rules for Eq0 and Booleans

- Booleans evaluate to themselves
 - A; false ⇒ false

- eq0 tests for 0
 - A; eq0 0 ⇒ true
 - A; eq0 3+4 ⇒ false
Rules for Conditionals

- A; \(e_1 \Rightarrow \text{true} \) \(A; \ e_2 \Rightarrow v \)

- A; if \(e_1 \) then \(e_2 \) else \(e_3 \) \(\Rightarrow v \)

- A; \(e_1 \Rightarrow \text{false} \) \(A; \ e_3 \Rightarrow v \)

- A; if \(e_1 \) then \(e_2 \) else \(e_3 \) \(\Rightarrow v \)

- Notice that only one branch is evaluated
 - A; if eq0 0 then 3 else 4 \(\Rightarrow 3 \)
 - A; if eq0 1 then 3 else 4 \(\Rightarrow 4 \)
Quiz 3

What is the derivation of the following judgment?

•; if eq0 3-2 then 5 else 10 ⇒ 10

(a)
•; 3 ⇒ 3 •; 2 ⇒ 2 3-2 is 1

•; eq0 3-2 ⇒ false •; 10 ⇒ 10
3-2 is 1

•; if eq0 3-2 then 5 else 10 ⇒ 10

(b)
3 ⇒ 3 2 ⇒ 2
3-2 is 1

eq0 3-2 ⇒ false 10 ⇒ 10

if eq0 3-2 then 5 else 10 ⇒ 10

(c)
•; 3 ⇒ 3
•; 2 ⇒ 2
3-2 is 1

•; 3-2 ⇒ 1 1 ≠ 0

•; eq0 3-2 ⇒ false •; 10 ⇒ 10

•; if eq0 3-2 then 5 else 10 ⇒ 10
Quiz 3

What is the derivation of the following judgment?

•; if eq0 3-2 then 5 else 10 ⇒ 10

(a)
•; 3 ⇒ 3 •; 2 ⇒ 2 3-2 is 1

•; eq0 3-2 ⇒ false •; 10 ⇒ 10

•; if eq0 3-2 then 5 else 10 ⇒ 10

(b)
3 ⇒ 3 2 ⇒ 2
3-2 is 1

eq0 3-2 ⇒ false 10 ⇒ 10

if eq0 3-2 then 5 else 10 ⇒ 10

(c)
•; 3 ⇒ 3
•; 2 ⇒ 2
3-2 is 1

•; 3-2 ⇒ 1 1 ≠ 0

•; eq0 3-2 ⇒ false •; 10 ⇒ 10

•; if eq0 3-2 then 5 else 10 ⇒ 10
Updating the Interpreter

```ocaml
let rec eval env e =
  match e with
  | Ident x       -> lookup env x
  | Val v         -> v
  | Plus (e1,e2)  ->
      let Int n1 = eval env e1 in
      let Int n2 = eval env e2 in
      let n3 = n1+n2 in
      Int n3
  | Let (x,e1,e2) ->
      let v1 = eval env e1 in
      let env' = extend env x v1 in
      let v2 = eval env' e2 in v2
  | Eq0 e1        ->
      let Int n = eval env e1 in
      if n=0 then Bool true else Bool false
  | If (e1,e2,e3) ->
      let Bool b = eval env e1 in
      if b then eval env e2
      else eval env e3
```

Basically both rules for `eq0` in this one snippet

Both if rules here
Quick Look: Type Checking

- Inference rules can also be used to specify a program's **static semantics**
 - I.e., the rules for type checking
- We won't cover this in depth in this course, but here is a flavor.

- **Types** \(t ::= \text{bool} | \text{int} \)
- **Judgment** \(\vdash e : t \) says \(e \) has type \(t \)
 - We define inference rules for this judgment, just as with the operational semantics
Some Type Checking Rules

- Boolean constants have type \texttt{bool}
 \[
 \begin{array}{c}
 \vdash \text{true} : \texttt{bool} \\
 \vdash \text{false} : \texttt{bool}
 \end{array}
 \]

- Equality checking has type \texttt{bool} too
 - Assuming its target expression has type \texttt{int}
 \[
 \begin{array}{c}
 \vdash e : \texttt{int} \\
 \vdash \text{eq0} e : \texttt{bool}
 \end{array}
 \]

- Conditionals
 \[
 \begin{array}{c}
 \vdash e_1 : \texttt{bool} \\
 \vdash e_2 : t \\
 \vdash e_3 : t
 \end{array}
 \vdash \text{if } e_1 \text{ then } e_2 \text{ else } e_3 : t
 \]
Handling Binding

What about the types of variables?

• Taking inspiration from the environment-style operational semantics, what could you do?

Change judgment to be \(G \vdash e : t \) which says \(e \) has type \(t \) under type environment \(G \)

• \(G \) is a map from variables \(x \) to types \(t \)

 ➢ Analogous to map \(A \), maps vars to types, not values

What would be the rules for \(\text{let} \), and variables?
Type Checking with Binding

- **Variable lookup**
 \[G(x) = t \]
 \[G \vdash x : t \]

- **Let binding**
 \[G \vdash e_1 : t_1 \]
 \[G, x : t_1 \vdash e_2 : t_2 \]
 \[G \vdash \text{let } x = e_1 \text{ in } e_2 : t_2 \]

 analogous to
 \[A(x) = \nu \]
 \[A; x \Rightarrow \nu \]
 \[A; e_1 \Rightarrow \nu_1 \]
 \[A, x : \nu_1; e_2 \Rightarrow \nu_2 \]
 \[A; \text{let } x = e_1 \text{ in } e_2 \Rightarrow \nu_2 \]
Scaling up

- Operational semantics (and similarly styled typing rules) can handle full languages
 - With records, recursive variant types, objects, first-class functions, and more

- Provides a concise notation for explaining what a language does. Clearly shows:
 - Evaluation order
 - Call-by-value vs. call-by-name
 - Static scoping vs. dynamic scoping
 - ... We may look at more of these later