
Overriding Variables: Shadowing
• We can override methods, can we override instance variables too?
• Answer: Yes, it is possible, but not recommended

• Overriding an instance variable is called shadowing, because it
makes the base instance variables of the base class inaccessible.
(We can still access it explicitly using super.varName).

public class Person { public class Staff
extends Person {

String name; String name;
// … // … name refers to

Staff’s name
} }

• This can be confusing to readers, since they may not have noticed
that you redefined name. Better to just pick a new variable name

30

Shadowing example

31

class Base {
public int x;
public Base(){x = 10;}
public String foo(){return x+"";}
}

class Derived extends Base {
public int x;
public Derived(){ x = 20;}
public String foo(){return (x + "\t" + super.x);}
}

Derived d = new Derived();
d.foo();

Shadowing example

32

class Base {
public int x;
public Base(){x = 10;}
public String foo(){return x+"";}
}

class Derived extends Base {
public int x;
public Derived(){ x = 20;}
public String foo(){return (x + "\t" + super.x);}
}

Derived d = new Derived();
d.foo();

20 10

Shadowing example

33

class Base {
public int x;
public Base(){x = 10;}
public void foo(){return x);}
}

class Derived extends Base {
public int x;
public Derived(){ x = 20;}
public void foo(){return (x + “\t” + super.x);}
}

Derived d = new Derived();
Base b = d;
b.foo();

Shadowing example

34

class Base {
public int x;
public Base(){x = 10;}
public void foo(){return x);}
}

class Derived extends Base {
public int x;
public Derived(){ x = 20;}
public void foo(){return (x + “\t” + super.x);}
}

Derived d = new Derived();
Base b = d;
b.foo(); 20 10

Shadowing example

35

class Base {
public int x;
public Base(){x = 10;}
public void foo(){return x);}
}

class Derived extends Base {
public int x;
public Derived(){ x = 20;}
public void foo(){return (x + “\t” + super.x);}
}

Derived d = new Derived();
Base b = d;
d.x;
b.x;

Shadowing example

36

class Base {
public int x;
public Base(){x = 10;}
public void foo(){return x);}
}

class Derived extends Base {
public int x;
public Derived(){ x = 20;}
public void foo(){return (x + “\t” + super.x);}
}

Derived d = new Derived();
Base b = d;
d.x; 20
b.x; 10

super and this
• super: refers to the base class object

• We can invoke any base class constructor using super(…).
• We can access data and methods in the base class (Person)

through super. E.g., toString() and equals() invoke the
corresponding methods from the Person base class, using
super.toString() and super.equals().

• this: refers to the current object
• We can refer to our own data and methods using “this.” but this

usually is not needed
• We can invoke any of our own constructors using this(…). As

with the super constructor, this can only be done within a
constructor, and must be the first statement of the constructor.
Example:

public Fraction(int n) {
this(n,1);

}
37

Memory Layout
class Base{
private int a;
protected int b;
protected int c;
protected void m1(){}
public void m2(){}

}

38

class Child extends Base{
private int d;
public void m1(){}
public void m3(){}

}

Base

Child

The Java Virtual Machine does not mandate any particular internal
structure for objects.

Memory Layout
class Base{
private int a;
protected int b;
protected int c;
protected void m1(){}
public void m2(){}

}

39

class Child extends Base{
private int d;
public void m1(){}
public void m3(){}

}

Pointer to m1()
Pointer to m2()

VTABLE
Pointer to
vtable
a
b
c

Base object

Memory Layout
class Base{
private int a;
protected int b;
protected int c;
protected void m1(){}
public void m2(){}

}

40

class Child extends Base{
private int d;
public void m1(){}
public void m3(){}

}

Pointer to m1()
Pointer to m2()

VTABLE
Pointer to
vtable
a
b
c

Pointer to m1()
Pointer to m2()

VTABLE

Pointer to m3()

Pointer to
vtable
a
b
c
d

Base object

Child object

Memory Layout
class Base{
private int a;
protected int b;
protected int c;
protected void m1(){}
public void m2(){}

}

41

class Child extends Base{
private int d;
public void m1(){}
public void m3(){}

}

Pointer to m1()
Pointer to m2()

VTABLE
Pointer to
vtable
a
b
c

Pointer to m1()
Pointer to m2()

VTABLE

Pointer to m3()

Pointer to
vtable
a
b
c
d

Base object

Child object

Each class has one vtable.

All objects of the this class shares the vtable.

Inheritance and Private
• Private members:

• Child class inherits all the private data of Base class
• However, private members of the base class cannot be

accessed directly

• Why is this? After you have gone to all the work of setting up
privacy, it wouldn’t be fair to allow someone to simply extend your
class and now have access to all the private information

42

Quiz 5: True/False

Excepting Object, which has no superclass, every class
has one and only one direct superclass.

43

A. True
B. False

Quiz5: True/False

Excepting Object, which has no superclass, every class
has one and only one direct superclass.

44

A. True
B. False

Quiz 6:
class Base {
public void foo(){
println("Base");

}
}
class Derived extends Base {
private void foo(){
println("Derived");

}
}
…
Base b = new Derived();
b.foo();

…
45

A. Base
B. Derived
C. Compiler Error
D. Runtime Error

Quiz 6:
class Base {
public void foo(){
println("Base");

}
}
class Derived extends Base {
private void foo(){
println("Derived");

}
}
…
Base b = new Derived();
b.foo();

…
46

A. Base
B. Derived
C. Compiler Error
D. Runtime Error

It is compiler error to give
more restrictive access to a
derived class function which
overrides a base class
function.

Quiz 7:

47

class Animal has a subclass Mammal. Which of
the following is true:

A. Because of single inheritance, Mammal can have no
subclasses.

B. Because of single inheritance, Mammal can have no other
parent than Animal.

C. Because of single inheritance, Animal can have only one
subclass.

D. Because of single inheritance, Mammal can have no siblings.

Quiz 7:

48

class Animal has a subclass Mammal. Which of
the following is true:

A. Because of single inheritance, Mammal can have no
subclasses.

B. Because of single inheritance, Mammal can have no other
parent than Animal.

C. Because of single inheritance, Animal can have only one
subclass.

D. Because of single inheritance, Mammal can have no siblings.

Access level

49

Modifier Class Package Subclass World
public Y Y Y Y
protected Y Y Y N
no modifier Y Y N N
private Y N N N

