
Object
• Object is the superclass of all java classes

• The class Object has no instance variables, but defines
a number of methods. These include:

toString(): returns a String representation of this
object

equals(Object o): test for equality with another
object o

• Every class you define should, overrides these two
methods with something that makes sense for your
class (hashCode method is also included in the group)

50

Early and Late Binding
• Motivation: Consider the following example:

Base b = new Child();
b.toString();

• Q: Should this call Base’s toString or Child’s toString?
• A: There are good arguments for either choice:

Early (static) binding: The variable b is declared to be of type Base.
Therefore, we should call the Base’s toString

Late (dynamic) binding: The object to which b refers was created as a
“new Child”. Therefore, we should call the Child’s toString

Pros and cons: Early binding is more efficient, since the decision can be
made at compile time. Late binding provides more flexibility

• Java uses late binding (by default): so Faculty toString is called
(Note: C++ uses early binding by default.)

51

Polymorphism
• Java’s late binding makes it possible for a single reference variable to refer

to objects of many different types. Such a variable is said to be
polymorphic (meaning having many forms)

• Example: Create an array of various university people and print
Shape[] list = new Shape[3];
list[0] = new Rect(10,20);
list[1] = new Circle (10);
list[2] = new Triangle(3,4,5)
for (int i = 0; i < list.length; i++)

System.out.println(list[i].getArea());

• What type is list[i]? It can be a reference to any object that is derived from
Shape. The appropriate getArea will be called

52

Output:

getClass and instanceof
• Objects in Java can access their type information dynamically
• getClass(): Returns a representation of the class of any object

Person bob = new Person(…);
Person ted = new Student(…);

if (bob.getClass() == ted.getClass()) // false (ted
is really a Student)

• instanceof: You can determine whether one object is an instance of (e.g., derived
from) some class using instanceof. Note that it is an operator (!) in Java, not a
method call

53

Up-casting and Down-casting
• We have already seen that we can assign a derived class reference

anywhere that a base class is expected
Upcasting: Casting a reference to a base class (casting up the inheritance

tree). This is done automatically and is always safe
Downcasting: Casting a reference to a derived class. This may not be

legal (depending on the actual object type). You can force it by
performing an explicit cast

• Illegal downcasting results in a ClassCastException run-time error

54

Safe Downcasting
• Can we check for the legality of a cast before trying it?
• A: Yes, using instanceof.

55

For(s:Shape){
if(s instanceof Circle){

Circle c = (Circle)s;
int r = c.getRadius();

}
}

Only Circle has getRadius method

Disabling Overriding with “final”
• Sometimes you do not want to allow method overriding

Correctness: Your method only makes sense when applied to the base
class. Redefining it for a derived class might break things

Efficiency: Late binding is less efficient than early binding. You know that
no subclass will redefine your method. You can force early binding by
disabling overriding

• We can disable overriding by declaring a method to be “final”

56

Disabling Overriding with “final”
• final: Has two meanings, depending on context:

• Define symbolic constants:

public static final int MAX_BUFFER_SIZE = 1000;

• Indicate that a method cannot be overridden by derived classes

public class Parent {
…
public final void someMethod() { … }

}

public class Child extends Parent {
…
public void someMethod() { … }

}

57

Subclasses cannot
override this method

Illegal! someMethod is
final in base class.

Quiz 8
class Base {

final public void show() {
println("Base");

}
}
class Derived extends Base {

public void show() {
println("Derived");

}
}
class Main {

public static void(String[] args){
Base b = new Derived();
b.show();

}
}

58

A. Base
B. Derived
C. Compiler Error
D. Runtime Error

Quiz 8
class Base {

final public void show() {
println("Base");

}
}
class Derived extends Base {

public void show() {
println("Derived");

}
}

…
Base b = new Derived();
b.show();

…

59

A. Base
B. Derived
C. Compiler Error
D. Runtime Error

Final methods cannot be
overridden. Compiler
Error: overridden method
is final

Quiz 9
class Base {
public static void show() {
println("Base”);

}
}
class Derived extends Base {
public static void show() {
println("Derived");

}
}
…
Base b = new Derived();;
b.show();

…
60

A. Base
B. Derived
C. Compiler Error

Quiz 9
class Base {
public static void show() {
println("Base”);

}
}
class Derived extends Base {
public static void show() {
println("Derived");

}
}
…
Base b = new Derived();;
b.show();

…
61

A. Base
B. Derived
C. Compiler Error

when a function is static,
runtime polymorphism
doesn't happen.

Abstract Class

Abstract classes cannot be instantiated, but
they can be subclassed.
It may or may not include abstract methods.

62

public abstract class Shape {
private String id;
public Shape (String id) {this.id = id};
public abstract double getArea();
public String getId() {return id;}

}

This abstract method must be defined in a
concrete subclass.

Abstract Class

63

public abstract class Shape {
private String id;
public Shape (String id) {this.id = id};
public abstract double getArea();
public String getId() {return id;}

}

public class Circle extends Shape {
private double radius;
public Circle (double r) {
super(“Circle”); radius = r;

}
double getArea(){return Math.PI * radius * radius;}
public double getRadius() {return radius;}
public void setRadius(double r) {radius = r}

}

Must implement

Inheritance versus Composition
• Inheritance is but one way to create a complex class from

another. The other way is to explicitly have an instance
variable of the given object type. This is called composition

Common Object:
public class ObjA {

public methodA() { … }
}

Inheritance: Composition:
public class ObjB extends ObjA { public class

ObjB {
… ObjA a;
// call methodA(); // call a.methodA()

} }

• When should I use inheritance vs. Composition?
• ObjB “is a” ObjA: in this case use inheritance
• ObjB “has a” ObjA: in this case use composition

64

Add ObjA as an
instance variable.

Derive a new
class from
ObjA.

Inheritance versus Composition
• University parking lot permits: A parking permit object involves a university

Person and a lot name (“4”, “11”, “XX”, “Home Depot”)

Inheritance: Composition:
public class Permit extends Person { public class Permit {

String lotName; Person p;
String lotName;

// … // …
} }

• Which to use?
A parking permit “is a” person? Clearly no
A parking permit “has a” person? Yes, because a Person is one of the two

entities in a a permit object
So composition is the better design choice here

• Prefer Composition over inheritance
When in doubt or when multiple choices available, prefer composition over
Inheritance

65

