
Object
• Object is the superclass of all java classes

• The class Object has no instance variables, but defines 
a number of methods.  These include:

toString( ): returns a String representation of this 
object

equals(Object o): test for equality with another 
object o

• Every class you define should, overrides these two 
methods with something that makes sense for your 
class (hashCode method is also included in the group)
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Early and Late Binding
• Motivation: Consider the following example:

Base b = new Child();
b.toString();

• Q: Should this call Base’s toString or Child’s toString?
• A: There are good arguments for either choice:

Early (static) binding: The variable b is declared to be of type Base. 
Therefore, we should call the Base’s toString

Late (dynamic) binding: The object to which b refers was created as a 
“new Child”. Therefore, we should call the Child’s toString

Pros and cons: Early binding is more efficient, since the decision can be 
made at compile time. Late binding provides more flexibility

• Java uses late binding (by default): so Faculty toString is called 
(Note: C++ uses early binding by default.)
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Polymorphism
• Java’s late binding makes it possible for a single reference variable to refer 

to objects of many different types.  Such a variable is said to be 
polymorphic (meaning having many forms)

• Example: Create an array of various university people and print
Shape[ ] list = new Shape[3];
list[0] = new Rect(10,20);
list[1] = new Circle (10);
list[2] = new Triangle(3,4,5)
for (int i = 0; i < list.length; i++ )

System.out.println( list[i].getArea( ) );

• What type is list[i]? It can be a reference to any object that is derived from 
Shape.  The appropriate getArea will be called
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Output:



getClass and instanceof
• Objects in Java can access their type information dynamically
• getClass( ): Returns a representation of the class of any object

Person bob = new Person( … );
Person ted = new Student( … );

if ( bob.getClass( ) == ted.getClass( ) ) // false (ted 
is really a Student)

• instanceof: You can determine whether one object is an instance of (e.g., derived 
from) some class using instanceof.  Note that it is an operator (!) in Java, not a 
method call
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Up-casting and Down-casting
• We have already seen that we can assign a derived class reference 

anywhere that a base class is expected
Upcasting: Casting a reference to a base class (casting up the inheritance 

tree).  This is done automatically and is always safe
Downcasting: Casting a reference to a derived class.  This may not be 

legal (depending on the actual object type).  You can force it by 
performing an explicit cast

• Illegal downcasting results in a ClassCastException run-time error
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Safe Downcasting
• Can we check for the legality of a cast before trying it?
• A: Yes, using instanceof.
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For(s:Shape){
if(s instanceof Circle){

Circle c = (Circle)s;
int r = c.getRadius();

}
}

Only Circle has getRadius method



Disabling Overriding with “final”
• Sometimes you do not want to allow method overriding

Correctness: Your method only makes sense when applied to the base 
class. Redefining it for a derived class might break things

Efficiency: Late binding is less efficient than early binding.  You know that 
no subclass will redefine your method. You can force early binding by 
disabling overriding

• We can disable overriding by declaring a method to be “final”
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Disabling Overriding with “final”
• final: Has two meanings, depending on context:

• Define symbolic constants:

public static final int MAX_BUFFER_SIZE = 1000;

• Indicate that a method cannot be overridden by derived classes

public class Parent {
…
public final void someMethod( ) { … }

}

public class Child extends Parent {
…
public void someMethod( ) { … }

}
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Subclasses cannot
override this method

Illegal! someMethod is 
final in base class.



Quiz 8
class Base {

final public void show() {
println("Base");

}
}
class Derived extends Base {

public void show() {
println("Derived");

}
}
class Main {

public static void(String[] args){
Base b = new Derived();
b.show();

}
}

58

A. Base
B. Derived
C. Compiler Error
D. Runtime Error



Quiz 8
class Base {

final public void show() {
println("Base");

}
}
class Derived extends Base {

public void show() {
println("Derived");

}
}

…
Base b = new Derived();
b.show();

…
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A. Base
B. Derived
C. Compiler Error
D. Runtime Error

Final methods cannot be 
overridden. Compiler 
Error: overridden method 
is final



Quiz 9
class Base {
public static void show() {
println("Base”);

}
}
class Derived extends Base {
public static void show() {
println("Derived");

}
}
…
Base b = new Derived();;
b.show();

…
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A. Base
B. Derived
C. Compiler Error



Quiz 9
class Base {
public static void show() {
println("Base”);

}
}
class Derived extends Base {
public static void show() {
println("Derived");

}
}
…
Base b = new Derived();;
b.show();

…
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A. Base
B. Derived
C. Compiler Error

when a function is static, 
runtime polymorphism 
doesn't happen.



Abstract Class

Abstract classes cannot be instantiated, but 
they can be subclassed.
It may or may not include abstract methods. 
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public abstract class Shape {
private String id; 
public Shape (String id) {this.id = id};
public abstract double getArea(); 
public String getId() {return id;}

}

This abstract method must be defined in a 
concrete subclass.



Abstract Class
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public abstract class Shape {
private String id; 
public Shape (String id) {this.id = id};
public abstract double getArea(); 
public String getId() {return id;}

}

public class Circle extends Shape {
private double radius; 
public Circle (double r) { 
super(“Circle”); radius = r; 

} 
double getArea(){return Math.PI * radius * radius;} 
public double getRadius() {return radius;} 
public void setRadius(double r) {radius = r} 

}

Must implement



Inheritance versus Composition
• Inheritance is but one way to create a complex class from 

another.  The other way is to explicitly have an instance 
variable of the given object type.  This is called composition

Common Object:
public class ObjA {

public methodA( ) { … }
}

Inheritance: Composition:
public class ObjB extends ObjA { public class

ObjB {
… ObjA a;
// call methodA( ); // call a.methodA( )

} }

• When should I use inheritance vs. Composition?
• ObjB “is a” ObjA: in this case use inheritance
• ObjB “has a” ObjA: in this case use composition
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Add ObjA as an 
instance variable.

Derive a new
class from 
ObjA.



Inheritance versus Composition
• University parking lot permits: A parking permit object involves a university 

Person and a lot name (“4”, “11”, “XX”, “Home Depot”)

Inheritance: Composition:
public class Permit extends Person { public class Permit {

String lotName; Person p;
String lotName;

// … // …
} }

• Which to use?
A parking permit “is a” person? Clearly no
A parking permit “has a” person? Yes, because a Person is one of the two 

entities in a a permit object
So composition is the better design choice here

• Prefer Composition over inheritance
When in doubt or when multiple choices available, prefer composition over
Inheritance
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